In computer science, a heap is a specialized tree-based data structure that satisfies the heap property: if P is a parent node of C, then the key (the value) of P is either greater than or equal to (in a max heap) or less than or equal to (in a min heap) the key of C. A common implementation of a heap is the binary heap, in which the tree is a complete binary tree. (Quoted from Wikipedia at https://en.wikipedia.org/wiki/Heap_(data_structure))
Your job is to tell if a given complete binary tree is a heap.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers: M (≤ 100), the number of trees to be tested; and N (1 < N ≤ 1,000), the number of keys in each tree, respectively. Then M lines follow, each contains N distinct integer keys (all in the range of int), which gives the level order traversal sequence of a complete binary tree.
Output Specification:
For each given tree, print in a line Max Heap
if it is a max heap, or Min Heap
for a min heap, or Not Heap
if it is not a heap at all. Then in the next line print the tree’s postorder traversal sequence. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line.
Sample Input:
3 8
98 72 86 60 65 12 23 50
8 38 25 58 52 82 70 60
10 28 15 12 34 9 8 56
Sample Output:
Max Heap
50 60 65 72 12 23 86 98
Min Heap
60 58 52 38 82 70 25 8
Not Heap
56 12 34 28 9 8 15 10
Ω
根据一棵完全二叉树的层次遍历判断是最大堆还是最小堆,最后输出该树的后序遍历。
那么就将每个节点与其根节点进行大小比较,用一个int的低两位(bit)标记 和 ,最后如果低两位都被标记了就说明不是堆,最低位被标记就是最小堆,次低位被标记就是最大堆,最后递归输出后序遍历即可。
🐎
#include <iostream>
#include <vector>
#define sign(x, y) (x==y?0:x>y?2:1)
using namespace std;
vector<int> level;
void printPost(int n)
{
if (n >= level.size()) return;
printPost(2 * n + 1);
printPost(2 * n + 2);
printf("%d%s", level[n], n == 0 ? "\n" : " ");
}
int main()
{
int m, n, jdg = 0;
cin >> m >> n;
level.resize(n);
bool flag = false;
for (int i = 0; i < m; ++i, flag = false, jdg = 0)
{
cin >> level[0];
for (int j = 1; j < n; ++j, flag = !flag)
{
cin >> level[j];
jdg |= sign(level[j / 2 - flag], level[j]);
}
printf(jdg == 3 ? "Not Heap\n" : jdg == 2 ? "Max Heap\n" : "Min Heap\n");
printPost(0);
}
}