Pycharm上配置和导入已安装的Tensorflow(2021全新教程——基于Anaconda)

本文详细介绍了如何在PyCharm中配置已安装在Anaconda环境中的Tensorflow。教程包括检查Tensorflow安装位置,新建或选择项目,设置Project Interpreter,以及导入Anaconda环境的步骤。最后通过运行测试代码来验证配置是否成功。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

承接上文2021最新Win10+Nvidia显卡环境下CUDA、cuDNN以及TensorFlow安装教程_you already have a new version-CSDN博客

注意:

1.笔者的Tensorflow是安装到Anaconda中去了,所以Tensorflow安装到其他位置的情况并不适用本教程。查看自己Tensorflow安装位置:

打开cmd或者Anaconda Prompt依次输入下列命令:

python
import tensorflow as tf
tf.__version__
tf.__path__

结果中如带有Anaconda命名的文件夹,说明你的电脑中的Tensorflow是装到Anaconda里面了。 

2.请知晓本机Anaconda以及Anaconda自带的python位置

一、打开Pycharm中的项目或者自己新建一个项目,依次按下述步骤点击选择:

界面左上角File菜单->Settings->Project:[你需要使用Tensorflow的项目名称]->

Project Interpreter后显示如下界面:

二、新增Anaconda环境并导入已安装的Anaconda环境
 点击Project Interpreter后的设置图标选择“Add"

 

三、导入本机上已经安装的带有Tensorfow的Anaconda环境:

选择Exisiting Environment,点击在Interpreter栏后的省略号(...)图标,选择Anaconda安装文件下的python.exe文件作为Anaconda环境下的Python解释器,点击OK,也可以勾选为所有项目都导入该环境

 点击OK后即配置完成

四、测试是否成功

 在Pycharm中新建一个Python File后输入下述命令:

import tensorflow as tf
print(tf.__version__)
print('GPU', tf.test.is_gpu_available())

控制台输出下述结果说明配置成功:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寒冢人家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值