自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(164)
  • 收藏
  • 关注

原创 5大模式颠覆人机交互!多模态大模型AI Agents正在重构智能世界,你准备好了吗?

多模态AI Agents正在重塑人机交互,通过整合文本、图像、语音等多维度信息,突破传统AI的信息割裂、场景适应和交互自然性三大瓶颈。四大核心技术支撑其发展:数据融合打破模态壁垒,联合学习实现多模态协同训练,跨模态迁移学习促进知识复用,动态推理机制增强灵活应变能力。5大核心模式构建智能"操作系统":反射模式实现自我修正,工具使用模式扩展外部能力,ReAct模式模拟人类思考-行动闭环,规划模式拆解复杂任务,多智能体模式实现团队协作。这些技术已应用于智能家居、远程医疗、虚拟购物和自动驾驶等领

2025-07-31 18:32:22 650

原创 深度揭秘AI智能体:从原理到应用,一文读懂未来智能新范式

AI Agent 的终极价值体现在,它将彻底重塑我们与数字世界的交互模式。在未来,工作模式将不再是人被动适应工具,而是工具(AI Agent)主动理解人的意图,并与之协同完成各项工作任务。OpenAI 在其官方博客中多次强调,开发能够成为人类强大协作者的 AI Agent 是其长期追求的重要目标之一。随着 AI Agent 技术的不断成熟和普及,预计将催生出大量基于此的全新商业模式,同时 “一人公司” 这种新型创业模式也有望迎来爆发式增长,个体创业者借助强大的 AI Agent,能够以更低的成本、更高的效率

2025-07-31 18:21:47 1362

原创 强化学习三巨头PK:PPO、GRPO、DPO谁是大模型训练的「王炸」?

PPO是入门强化学习的「必经之路」,适用于多数通用任务;GRPO是LLM时代的「新宠」,专注提升序列生成质量;DPO则是高风险场景的「守护者」,擅长捕捉不确定性。选择算法时,若你在训练游戏AI或机器人,PPO足够可靠;若在优化大模型的回答质量,GRPO会更高效;若需处理金融、医疗等高风险决策,DPO能帮你规避隐藏风险。算法的进化永无止境,但理解它们的核心逻辑,才能让强化学习真正为你所用。【配套新书教材】《GPT多模态大模型与AI Agent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】

2025-07-30 18:40:11 458

原创 强化学习顶流算法PPO:从原理到代码,为什么它成了AI大模型训练的「万能钥匙」?

PPO的成功并非偶然:它用「剪辑」这一简单机制解决了策略优化的核心难题(更新稳定性),用「多轮迭代」提高了样本效率,用「Actor-Critic+熵正则化」平衡了探索与利用。对于研究者,它是快速验证想法的「瑞士军刀」;对于工程师,它是落地强化学习应用的「可靠工具」。未来,PPO的改进方向聚焦于「更精细的更新控制」(如自适应( \epsilon ))和「与其他技术的融合」(如离线强化学习、分层强化学习)。但无论如何,理解PPO的原理与实现,仍是掌握强化学习的必经之路。

2025-07-30 18:36:50 549

原创 从ChatGPT到AI管家:RLHF如何让机器学会“懂人心”?拆解让AI从“会说话”到“会听话”的核心技术

摘要: RLHF(基于人类反馈的强化学习)是AI从“会说话”到“会听话”的核心技术,通过三步训练(SFT基础训练、RM奖励建模、RL强化学习)让AI学习人类偏好。其优势在于解决传统模型“懂规律但不懂需求”的缺陷,但也面临数据成本高、标注偏见、依赖基础模型等挑战。未来发展方向包括数据优化、算法升级和个性化适配,目标是让AI更精准理解并服务于人类需求。RLHF代表了AI技术从“能力驱动”转向“需求驱动”的重要突破,是ChatGPT等大模型“懂人心”的关键所在。

2025-07-29 18:01:44 1041

原创 零基础也能30分钟上手大模型本地部署!用Ollama部署Llama 3 Web聊天机器人,从安装到对话一步到位

本文介绍了如何利用Ollama工具零基础部署Llama 3大语言模型,并搭建Web版聊天机器人。文章首先解释了Ollama作为大模型管理工具的核心作用,随后提供了从安装Ollama、配置Node.js环境到创建模型文件的详细步骤指南。通过ollama-webui-lite项目实现可视化交互界面,使普通用户也能轻松体验本地AI对话。此外,文章还分享了模型管理、性能优化等进阶技巧,并规划了从基础应用到商业落地的学习路径。随着开源大模型性能提升,本地部署将成为AI应用的重要方向,本文为技术爱好者和开发者提供了实用

2025-07-29 17:40:27 753

原创 字节跳动开源Coze,开启AI Agent开发新时代?

字节跳动开源AI Agent开发平台Coze,包含Coze Studio和Coze Loop两大核心项目,采用低代码/无代码设计,支持多模态交互与任务自动化。该平台显著降低开发门槛,提升企业效率,如智能客服响应时间从3分钟缩短至15秒。相比竞品,Coze更侧重中文优化和中小企业需求,未来将加速各行业数字化转型,预计1-3年内60%中小企业将实现核心业务流程自动化。开发者可掌握低代码技能参与生态建设,企业需从试点项目起步逐步实施AI战略。该开源项目将推动AI Agent技术民主化,促进智能协作时代的到来。

2025-07-28 18:27:54 882

原创 Coze与Dify终极对决:AI智能体开发平台怎么选?

本文对比了AI智能体开发平台Coze与Dify的核心差异。Coze是字节跳动推出的零代码平台,主打简易操作和快速搭建,适合个人轻量级应用及字节生态用户;Dify则是开源平台,提供深度定制和私有化部署,适合企业级复杂场景。两者在功能、价格、技术架构等方面各有优劣,建议根据技术基础、应用场景和合规需求选择。总体而言,Coze适合快速验证想法,Dify适合深度开发,两者可互补使用。

2025-07-28 18:21:34 1408

原创 从RLHF到DPO:大模型强化学习全景揭秘,解锁AI对齐核心密码

强化学习为大模型注入了 “理解人类偏好” 的能力,从 RLHF 到 DPO、RLOO,算法演进的核心是 “更简单、更高效、更稳定”。未来,随着多模态大模型的发展,强化学习将进一步扩展到 “文本 + 图像 + 语音” 的联合对齐,同时需在 “对齐税”“Reward Hacking” 等挑战中寻找平衡。对于从业者,理解这些算法不仅能优化大模型训练,更能把握 “AI 如何更好服务人类” 的技术脉络 —— 毕竟,让 AI 生成 “人类真正需要的内容”,才是大模型价值的核心。

2025-07-27 19:26:46 748

原创 从大模型原理到落地:大模型核心技术详解,看完这篇你也能从入门到精通

大模型的本质,是 “通过大规模数据 + 大规模参数 + 高效架构,让模型从数据中学习人类语言规律与知识,最终实现类人的文本理解与生成”。其核心突破并非 “意识”,而是 “对复杂模式的捕捉与复用”。未来,大模型将向 “更小更高效”(如开源小模型)、“更安全可控”(如对齐人类价值观)、“多模态融合”(文本 + 图像 + 语音)方向发展。无论你是开发者、产品经理还是学习者,理解其原理与实践路径,都是抓住 AI 时代机遇的关键。从统计模型到千亿参数大模型,从 “预测下一词” 到 “理解人类意图”,这条技术之路仍

2025-07-27 19:22:37 1137

原创 零门槛搞定大模型+Ollama+Open-WebUI!3种安装方法全拆解,小白10分钟上手本地AI助手

摘要: 本文详细介绍了在本地部署Ollama+Open-WebUI的三种方法(Python pip、源码编译、Docker容器),帮助用户快速搭建大模型AI助手。Ollama负责运行本地大模型(如Llama 3),Open-WebUI提供交互界面。安装前需确保系统满足硬件和软件要求,并注意网络问题。三种安装方式各有侧重,小白用户推荐Python pip安装,进阶用户可选源码或Docker。文章还提供了常见问题的解决方案,如网络连接失败、服务启动错误等,确保用户顺利使用。通过简单配置,即可在本地体验多模型切换

2025-07-26 20:04:36 615

原创 从0到1玩转本地大模型!Open WebUI全攻略:ChatGPT平替+隐私可控,1条命令搞定部署

Open WebUI 是一款开源、可扩展、完全离线运行的自托管 AI 聊天平台,前身为 “Ollama WebUI”,后独立为专注于本地化大模型交互的工具。它的核心定位是 “ChatGPT 网页版的私有化平替”,让用户无需依赖云端,通过浏览器就能与本地或远程大语言模型(LLM)高效交互。

2025-07-26 19:01:04 1091

原创 从 “能打” 到 “顶尖”:DeepSeek-V3 后训练拆解,微调 + 强化学习如何让大模型脱胎换骨?

【配套新书教材】《GPT多模态大模型与AI Agent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】新书特色:《GPT多模态大模型与AI Agent智能体》(跟我一起学人工智能)是一本2025年清华大学出版社出版的图书,作者是陈敬雷,本书深入探讨了GPT多模态大模型与AI Agent智能体的技术原理及其在企业中的应用落地。全书共8章,从大模型技术原理切入,逐步深入大模型训练及微调,还介绍了众多国内外主流大模型。LangChain技术、RAG检索增强生成、多模态大模型等均有深入讲解。

2025-07-25 18:21:47 723

原创 DeepSeek FlashMLA 技术拆解,AI 推理迎来颠覆性突破

DeepSeek开源的高效FlashMLA解码内核针对Hopper GPU优化,在AI推理领域实现突破性进展。该技术融合FlashAttention的内存优化与cutlass矩阵运算优势,通过低秩分解和分页KV缓存技术显著降低93.3%显存占用,提升5.76倍生成效率。专为H800 GPU设计,支持BF16精度,在长文本处理、实时交互等场景中展现优势,如DeepSeek-V3以558万美元成本高效完成训练。开源举措推动行业技术共享,降低企业推理成本,为多模态大模型发展提供核心支撑。

2025-07-25 18:16:50 655

原创 Dify全解析:大模型驱动下的AI智能体开发平台,MCP协议赋能全流程创新

摘要: Dify作为开源大模型应用开发平台,通过BaaS+LLMOps模式,为开发者提供从模型调用到AI智能体部署的全流程支持。其核心优势在于: 全栈能力:整合Prompt工程、RAG、Agent推理等工具链,支持可视化编排与私有化部署; 低门槛开发:提供空白应用模板、DSL文件导入和节点化工作流,简化复杂智能体构建; 生产级特性:1.7.0版本新增OAuth安全授权、插件自动升级/回滚,强化企业级适用性; 生态协同:深度集成MCP协议,实现跨模型与系统的标准化交互。典型场景如知识库问答、订单处理智能体

2025-07-24 18:27:40 728

原创 炸裂!Dify 1.7.0 惊爆上线,OAuth 登录震撼来袭,AI Agent与MCP能力再突破!

Dify 1.7.0版本重磅发布,带来多项突破性升级:1)OAuth登录功能实现第三方服务免密钥授权,提升80%操作效率并增强安全性;2)AI Agent智能体优化任务拆解、工具调用和异常处理能力,复杂任务处理效率提升40%;3)深度适配MCP协议,支持跨平台智能体协作,接口响应速度提升30%;4)新增插件自动升级与回滚机制,保障系统稳定性。该版本特别适合企业级开发者构建安全、自主的智能体系统,支持复杂业务流程和跨平台协作。升级向下兼容,可通过Docker一键完成。

2025-07-24 18:22:16 733

原创 OpenAI发布ChatGPT Agent,AI智能体迎来关键变革

OpenAI发布ChatGPT Agent,标志着AI智能体迈向执行复杂任务的新阶段。该模型整合了DeepResearch和Operator功能,可处理日常生活任务(如婚礼筹备)、实现互联网浏览交互、进行办公文档处理与API调用。在基准测试中,ChatGPT Agent在知识运用、数学推理、网络任务执行等方面表现优异。尽管存在安全风险,OpenAI已采取防护措施。该功能将面向Pro、Plus和Team用户开放。

2025-07-23 18:31:43 716 1

原创 从零搭建本地AI助手!Ollama+DeepSeek大模型+OpenWebUI超全安装指南,隐私安全又好用

本文详细介绍了如何通过Ollama、DeepSeek R1和OpenWebUI搭建本地AI助手,实现隐私安全的智能交互。内容涵盖Windows和Linux系统的完整安装流程,包括Ollama的配置、模型路径修改、DeepSeek不同参数版本的选择,以及OpenWebUI可视化界面的部署。文章特别强调了数据本地化、中文语境适配和硬件性能匹配等优势,并提供了常见问题的解决方案,帮助用户轻松实现从零开始搭建本地AI环境。

2025-07-23 18:26:19 1387

原创 Ollama+DeepSeek大模型+Dify+AI Agent智能体全流程拆解,小白也能3小时上手

摘要: 本文介绍了如何通过开源工具Ollama、DeepSeek大模型和Dify平台快速搭建企业本地知识库,解决信息管理痛点。Ollama简化本地部署,DeepSeek提供高效中文处理能力,Dify实现零代码配置,三者协同可在3小时内完成私有知识库搭建。文章详细拆解了部署流程,并列举了企业内部文档管理、智能客服升级等核心应用场景。该方案成本低、数据安全,适合企业快速实现智能化转型,让私有数据转化为可对话的资产,大幅提升工作效率。

2025-07-22 22:11:36 1613

原创 DeepSeek大模型三招破解大模型落地死结,效率暴增45倍、成本砍63%

大模型领域的黑马 DeepSeek,正以 "知识熔断 + 流程嵌入 + 轻量化引擎" 的组合拳,撕开大模型落地的 "深水区",让工业阀门企业响应速度从 6 小时缩至 8 分钟,医疗分诊失误率直降 42%,成本暴跌 63%。这场从 "参数竞赛" 到 "价值变现" 的革命,正在重构企业智能化的底层逻辑。

2025-07-22 22:04:36 1262

原创 揭秘ChatGPT Agent:从架构到场景,OpenAI如何用“双浏览器+虚拟电脑“重构AI执行逻辑?

OpenAI ChatGPT Agent实现重大突破,从被动应答升级为主动执行任务。该智能体通过"双浏览器+虚拟计算机环境"架构,整合Operator网页操作、Deep Research信息分析与ChatGPT本体能力,支持自主规划并执行商务办公、生活服务等复杂任务。其创新设计包括:文本浏览器处理结构化数据,可视化浏览器模拟人工操作;虚拟环境提供隔离操作空间。目前虽存在调用限额等限制,但已重新定义AI Agent性能标准,展现了向AGI发展的潜力。该技术源于《GPT多模态大模型与AI A

2025-07-21 18:23:08 967

原创 颠覆认知!ChatGPT Agent 横空出世:接管浏览器、自动办公,奥特曼称这就是 AGI 的感觉

OpenAI发布ChatGPT Agent功能,标志着AI智能体技术取得重大突破。该系统整合Operator、Deep Research和ChatGPT本体,形成统一智能体架构,能自主完成网页浏览、信息处理、代码执行等复杂任务,并支持实时交互和任务中断。在多项基准测试中表现优异,如Humanity’s Last Exam(HLE)得分44.4,比价、PPT生成等实际场景应用也展示了其强大能力。Pro用户享有每月400次调用额度,功能将逐步向各版本用户开放。这一突破将AI从语言交互提升至任务执行层面,重新定义

2025-07-21 18:18:17 690

原创 开源大模型Kimi K2硬刚Anthropic:万亿参数Agent能力碾压,实测能写游戏、做日历、析股市,3大短板难掩颠覆性

北京月之暗面科技突然在 Hugging Face 上甩出了一颗 “炸弹”——Kimi K2 模型全量开源。这个总参数 1 万亿、激活参数 320 亿的 MoE 架构大模型,带着 “瞄准 Anthropic 的 Agent 能力” 的野心,瞬间在 AI 圈掀起海啸。从实测能自动生成可直接运行的打字游戏,到 1214 条上证指数数据一键出分析报告,再到对标 GPT-4.1、Claude 4 Opus 的测试成绩,Kimi K2 用 “硬实力” 证明:大模型的开源

2025-07-20 11:02:52 791

原创 大模型开源王炸!Kimi K2凭万亿参数撕开大模型天花板:代码、Agent、推理全碾压,32家企业疯抢接入

北京月之暗面科技推出的开源大模型Kimi K2以1万亿参数和创新的MoE架构引发行业震动。该模型通过按需激活32B参数的设计,大幅降低推理成本,在代码生成、Agent任务执行和数学推理三大领域表现卓越,测试成绩超越GPT-4等主流模型。其创新技术包括MuonClip优化器确保训练稳定性,以及独特的合成数据训练策略。上线4天即吸引32家科技企业接入,推动大模型从对话工具向智能体转型。Kimi K2的开源策略显著降低了行业创新门槛,可能重塑大模型竞争格局,加速AI在各领域的落地应用。

2025-07-20 10:57:18 1942

原创 一文看懂:马斯克旗下人工智能公司 xAI 正式推出的Grok 4,Grok 4 如何开启 “多智能体内生化” 的 AI 新范式,重塑多模态大模型与 AI Agent 未来

马斯克旗下xAI公司推出的Grok 4大模型在AI领域实现重大突破。该模型在SAT、GRE等考试中近乎满分,在HLE测试中超越人类博士水平(44.4%正确率),采用多智能体协作机制增强推理能力。技术亮点包括:20万张H100 GPU的强大算力支持、混合专家架构(MoE)提升效率、256k tokens长文本处理能力。应用场景覆盖科研、商业、游戏开发等领域,能快速分析文献数据、优化商业决策、辅助游戏创作。目前语音交互表现优异,但多模态能力仍有提升空间。面临高能耗(相当于4万辆燃油车年碳排放)和300美元/月的

2025-07-19 22:17:54 1304

原创 大模型军备竞赛升级!Grok 4 携 “多智能体内生化” 破局,重构 AI 算力与 Agent 2.0 时代

马斯克旗下xAI发布新一代AI模型Grok 4,以"多智能体内生化"为核心突破,在HLE基准测试中表现优异。Grok 4 Heavy版本支持多Agent并行协作,实现了从CoT思维链到Agent能力的内生化转变。文章分析指出,大模型发展正经历深度思考、Agent和多模态三大内生化进程,未来算力需求将呈几何级增长。同时揭示了AI编码能力的认知误区,强调项目级实战能力的重要性。随着Agent内生化趋势确立,全球AI军备竞赛已进入新阶段。

2025-07-19 22:11:49 769

原创 震撼!GPT-5多模态大模型即将登场,推理与多模态融合,或将彻底改写AI格局

OpenAI即将推出的GPT-5或将彻底改写AI格局,深度融合多模态处理与深度推理能力,实现从"专项能手"到"全能助手"的跨越。GPT-5将整合原GPT系列的多模态优势与O系列的推理专长,并引入Operator代理的自主行动能力,为用户提供一站式解决方案。这一突破性技术有望解决用户在不同模型间频繁切换的痛点,在教育、设计、职场等多个场景实现更流畅的人机交互。尽管面临多任务协同的技术挑战,GPT-5的推出仍被视为OpenAI捍卫行业标杆地位的关键举措,或将重新定义AI应

2025-07-18 21:27:55 868

原创 多模态大模型重构人机交互,全感官时代已来

2025 年,多模态大模型成为人工智能领域的 “分水岭” 技术。这种能同时理解、生成并关联文本、图像、音频、视频及结构化数据的超级智能系统,正从实验室快速渗透到产业与生活的方方面面,推动人机交互从 “指令执行” 迈向 “全感官协同” 的全新阶段。

2025-07-18 21:24:12 1871

原创 从Transformer到ChatGPT:大模型技术原理全景拆解——零基础也能看懂的核心逻辑

《从Transformer到ChatGPT:大模型技术原理全景拆解》一文深入解析了大模型的发展历程与核心技术。文章指出,大模型的本质在于"智能涌现",而非简单的参数堆砌。从2017年Transformer架构突破RNN局限,到2022年ChatGPT通过RLHF实现人机自然交互,大模型经历了五次关键跃迁。核心技术Transformer的自注意力机制和多头注意力设计,使模型能动态捕捉语义关联。文章强调,大模型的智能源于从海量数据中提炼语言、逻辑和任务规律,而非单纯记忆。当前大模型正从专项工

2025-07-17 18:22:13 908

原创 从 GPT 到 AGI:大模型时代的终极冲刺 —— 揭秘通用人工智能与大模型的本质差异

本文探讨了GPT等大模型与通用人工智能(AGI)的本质差异。大模型本质是"超大规模预测机器",擅长特定模态任务但缺乏自主认知;而AGI需具备跨领域学习、自主规划等类人智能。二者在学习方式、能力范围、决策逻辑等方面存在显著差异。虽然大模型为AGI提供了技术基础(如语言理解、多模态融合),但实现真正AGI仍需突破从预测到推理、从被动到主动、从无自我到类意识三大瓶颈。文章预测AGI发展将经历工具增强、领域通用、跨领域智能三个阶段,强调大模型只是AGI发展历程中的技术阶梯,最终需要智能范式的彻底

2025-07-17 18:16:07 1003

原创 一文读懂!AI Agent、Agentic AI、Multi Agent Systems的区别与发展全解析

本文深入解析了AI Agent、Agentic AI和Multi Agent Systems三大人工智能概念的区别与发展趋势。AI Agent是基础的智能单元,具备自主性和任务专一性;Agentic AI代表更高阶的自主协作能力;Multi Agent Systems则是多个智能体的协同系统。文章预测未来这些技术将在智能制造、智慧城市等领域广泛应用,推动生产力飞跃,同时也面临就业结构变化、伦理隐私等挑战。最终,三种技术有望融合为"感知-决策-执行"闭环,使AI从工具升级为"数字

2025-07-16 18:30:35 1021

原创 AI Agent:重构智能边界的终极形态——从技术内核到未来图景全景解析

摘要: AI Agent(智能体)作为新一代人工智能技术,正在从被动工具向自主决策者进化。其核心特征包括自主性、交互性、目的性、适应性和多模态能力,通过感知层、决策层、执行层和记忆模块的协同工作实现闭环任务处理。发展历程经历了规则驱动、机器学习驱动和大模型驱动三个阶段,应用场景涵盖客服、医疗、金融、制造业和游戏等领域。与传统软件相比,AI Agent擅长非结构化数据处理和动态推理,但仍面临技术瓶颈、成本压力和伦理挑战。未来趋势将向通用智能体(AGI)、开源生态和具身智能发展,市场规模预计快速增长,成为人机协

2025-07-16 18:25:57 1162 1

原创 从 Level-1 到超越人类:AGI 大模型的突围之路与终极挑战

摘要: 当前AI大模型(如GPT-4、Gemini 1.5)仅处于通用人工智能(AGI)初级阶段(Level-1),虽在语言、多模态(如Sora视频生成)和具身智能领域取得进展,但仍面临专精化与通用逻辑的割裂。突破路径包括:参数堆砌(遵循Scaling Law,模型参数量向万亿级扩展)、算法革新(优化Transformer架构,如MoE稀疏模型提升效率)、场景落地(开源生态与垂直领域微调)。核心挑战是“幻觉”问题(错误自信输出),学界分为数据扩展派与知识图谱改良派。未来十年,多模态与具身智能或实现物理常识无

2025-07-15 17:40:11 977

原创 大模型迈向 AGI:从突破数学能力到模拟人类思维

大语言模型(LLM)作为人工智能领域的重要成果,正逐渐改变着人们对智能的认知。然而,其在数学能力等方面的短板曾备受关注,业界也一直在努力通过各种技术弥补大语言模型运行方式的不足,让其思考方式变得更像人类,以推动通用人工智能(AGI)的实现。

2025-07-15 17:36:39 884

原创 大模型不用微调也能学?揭秘大模型 “看例子做题” 的黑科技 ——In-Context Learning 深度拆解

《揭秘大模型"看例子做题"的黑科技:In-Context Learning深度解析》 本文深度剖析了大模型的In-Context Learning(ICL)技术,这是一种无需微调参数、仅通过示例就能让模型完成新任务的革命性方法。文章从五个维度展开: 1)定义ICL并区分其与提示学习、小样本学习的本质差异; 2)详解零样本、单样本和少样本三种ICL实现方式; 3)提出精调阶段和推理阶段的优化策略,包括数据选择和提示设计等技巧; 4)展示ICL在NLP基准测试和跨领域应用中的实际效果; 5)

2025-07-14 22:06:36 656

原创 从“直觉抢答”到“深度思考”:大模型的“慢思考”革命,思维链、树、图如何让AI越来越像人?

摘要:本文探讨了GPT多模态大模型从“直觉抢答”到“深度思考”的进化过程,揭示了思维链(CoT)、思维树(ToT)和思维图(GoT)等推理拓扑如何推动AI实现类人推理。早期模型依赖黑箱模式匹配,而现代大模型通过结构化推理步骤(如分步计算、多路径探索、信息融合)逐步提升复杂任务的准确率。文章分析了四种拓扑形态的演变(线性→分支→网状),指出其本质是对思维节点的结构化组织,并阐释了生成器、评估器、中止器和决策器四大核心组件的协同机制。这一“慢思考”革命使AI在逻辑推理、创意生成等任务中展现出更接近人类的认知能力

2025-07-14 22:02:07 2428

原创 DeepSeek 微调实践:DeepSeek-R1 大模型基于 MS-Swift 框架部署 / 推理 / 微调实践大全

本文介绍了基于MS-Swift框架的DeepSeek-R1大模型的部署、推理与微调实践。DeepSeek-R1是一款专为推理优化的语言模型,结合MS-Swift框架可实现高效部署。文章详细讲解了环境配置、模型下载、vLLM加速部署等步骤,并通过实例展示了API调用和本地推理操作。此外,还提供了使用LoRA方法进行模型微调的完整流程,包括数据集准备和训练参数设置。该技术方案平衡了性能与资源消耗,为开发者提供了实用的大模型应用指南。 (字数:149)

2025-07-13 21:44:06 829

原创 LLM大模型微调技术全景:从IFT、SFT到RLHF、DPO与PPO强化学习

本文系统梳理了大语言模型(LLM)微调技术的演进路径,从基础微调(IFT/SFT)到强化学习优化(RLHF/PPO),再到轻量级偏好对齐方法(DPO)。IFT和SFT让模型具备任务执行能力,RLHF通过人类反馈优化输出质量,PPO算法确保训练稳定性,而DPO则简化了对齐流程。这些技术呈现出从功能实现到人类偏好对齐、从复杂到高效的进化逻辑,为不同应用场景提供了多样化选择。文章通过对比分析各技术的特点与适用性,揭示了LLM微调的核心方法论和发展趋势。

2025-07-13 21:38:39 705

原创 拆解多模态大模型金字塔:OpenAI 的 CLIP 凭什么成为基础模型里的「破圈者」?

《OpenAI CLIP:跨模态理解的开创性多模态模型》摘要:CLIP(Contrastive Language-Image Pre-training)是OpenAI研发的革命性多模态模型,通过对比学习将图像和文本映射到同一语义空间,实现跨模态精准匹配。其核心优势在于:1)采用双流网络架构处理图文数据;2)基于4亿规模的WIT数据集训练,支持零样本推理;3)应用ViT作为图像编码器,有效捕捉视觉特征。CLIP在图像分类、跨模态检索等场景表现卓越,尤其擅长理解语言描述的细微差异。技术实现上,结合向量数据库和高

2025-07-12 22:09:31 812

原创 多模态大模型》多模态基础模型》多模态对齐、融合和表示

本文节选自陈敬雷《GPT多模态大模型与AI Agent智能体》一书,重点探讨多模态大模型的核心技术。文章详细解析了多模态基础模型的三大关键技术:对齐(建立跨模态数据关联)、融合(信息整合策略)和表示(数据编码方法),并介绍了CLIP等代表性模型。这些技术使AI系统能够协同处理文本、图像、视频等不同模态数据,实现更强大的理解和生成能力。书中还包含配套视频课程,通过理论解析和实战案例(如模型微调、RLHF等),帮助读者掌握大模型开发全流程。该书适合作为AI领域学习者的进阶教材,涵盖从技术原理到企业落地的完整知识

2025-07-12 22:03:00 722

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除