注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AI Agent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】
GPT多模态大模型与AI Agent智能体书籍本章配套视频课程【陈敬雷】
文章目录
GPT多模态大模型与AI Agent智能体系列二十一
一文读懂!AI Agent、Agentic AI、Multi Agent Systems的区别与发展全解析
在人工智能的快速发展进程中,诸多新兴概念不断涌现,令人眼花缭乱。其中,AI Agent、Agentic AI和Multi Agent Systems这三个概念,虽看似相似,实则蕴含着不同的内涵,代表着人工智能发展的不同层次与方向。它们之间有怎样的区别?又将如何塑造人工智能的未来?本文将深入剖析,为你揭开其中的奥秘。
一、概念区别:从个体到协作,从基础到高阶
(一)AI Agent(人工智能代理):智能世界的基础单元
AI Agent是人工智能领域中最基础的概念之一,如同智能世界的“基石”。它是指能够感知环境、进行决策并采取行动的智能实体。这些实体宛如人类智能行为的模拟者,具备学习、推理和问题解决等能力。从定义上看,AI Agent是一种自主软件实体,被精心设计用于在限定的数字环境里执行目标导向的任务。它能够感知结构化或非结构化的输入,基于上下文信息展开推理,进而采取行动以实现特定目标,常常作为人类用户或子系统的替代者。
其核心特征包括:
- 自主性:如同拥有独立意识的个体,AI Agent在部署后能够独立行动,对人工干预的依赖极小,这使得它可以在大规模场景中实现无人值守运行。例如客户服务机器人,无需人工时刻盯着,就能自主应对客户咨询。
- 任务专一性:AI Agent专注于特定功能领域,在该领域内进行高性能优化。就像日程安排助手,在日程管理方面表现出色,能够高效、准确地完成任务。
- 反应性与适应性:它能够敏锐地响应环境变化,包括用户指令、软件状态或API响应等。部分先进的AI Agent还通过反馈循环、启发式方法等整合基础学习机制,不断优化自身行为。以个性化推荐系统为例,它会根据用户的行为不断调整推荐内容。
AI Agent的范围极为广泛,小到一个简单的邮件过滤规则脚本,大到复杂的基于深度学习的机器人,都属于其范畴。它既可以独立运行,也能作为更大系统的一部分发挥作用。例如下棋程序,能感知棋盘状态,决策走法并行动落子;聊天机器人感知用户输入,决策回复内容并输出回复;扫地机器人感知房间地图和障碍物,决策清扫路径并移动清扫;还有自动监控网站价格变化的脚本等,都是AI Agent的具体实例。
(二)Agentic AI(代理式人工智能):迈向自主协作的高阶智能
Agentic AI是近年来随着大语言模型兴起而备受瞩目的术语,它代表着一种更高阶的人工智能形态,如同人工智能领域的“进阶大师”。与AI Agent不同,它并非指代某个具体的代理实例,而是更侧重于描述AI的行为模式和能力水平。
Agentic AI强调AI系统以高度自治、主动、目标驱动的方式运作。其核心特征如下:
- 高级自治:在复杂、长链条的任务中,能够独立进行规划、分解任务、执行,并依据反馈灵活调整策略,将人类在任务过程中的干预降至最低。比如,面对“帮我分析本季度销售数据并准备报告”这样的模糊指令,具备Agentic AI能力的系统能自动分解任务、查询数据库、分析趋势、生成图表并撰写报告草稿。
- 主动性与目标驱动:不只是被动响应环境,更能主动出击,积极发起行动,始终围绕目标持续推进,直至完成。
- 工具使用:善于利用外部工具来拓展自身能力,如搜索、计算器、API、代码执行环境等。例如,在处理复杂问题时,它能通过调用搜索引擎获取更多信息,借助API实现特定功能。
- 规划与反思:具备制定多步骤计划的能力,在执行过程中密切监控进展,评估结果。一旦发现问题,能够及时调整计划或反思错误。
从与AI Agent的关系来看,Agentic AI是AI Agent的高级形态或运作范式,可以说具备Agentic能力的AI Agent更具智能和自主性。像AutoGPT、BabyAGI、GPTEngineer等早期项目,便是体现Agentic AI范式的典型代表。
(三)Multi Agent Systems(多代理系统):协同合作的智能生态
Multi Agent Systems是一种包含多个AI Agent的复杂系统,宛如一个庞大的智能协作“社区”。在这个系统中,各个AI Agent可以相互通信、协作和竞争,共同致力于实现共同目标或解决复杂问题。它可以被理解为Agentic AI发展的更高级形态。
Multi Agent Systems的核心特征包括:
- 多个代理:系统由两个或更多独立的AI Agent组成,这些代理如同社区中的不同成员,各自具备独特的能力。
- 交互:代理之间通过通信(如消息传递)或借助环境进行间接交互,以此实现信息共享和协同工作。
- 组织:代理之间存在特定的组织结构,如层级结构、市场结构、团队结构等。例如在一个层级结构中,不同层级的代理承担不同职责,协同完成任务。
- 行为模式:交互行为丰富多样,涵盖协作、协调、竞争、协商等。比如在协作时,多个代理共同努力完成一个大型项目;在竞争中,代理们争夺有限资源。
- 涌现性:系统的整体行为或结果往往源自代理间的交互,呈现出“整体大于部分之和”的奇妙特性。就像一群协作的机器人探索未知环境,它们相互配合产生的效果远超单个机器人的作用。
AI Agent是Multi Agent Systems的构建基石,而Multi Agent Systems中的单个Agent既可以是具备Agentic能力的高级Agent,也可以是相对简单、仅负责特定传感或执行任务的代理。Multi Agent Systems是解决分布式智能、并行处理、专业分工等复杂问题的有力架构方式。例如,在一群协作的机器人探索未知环境或搬运大型物体的场景中,机器人之间通过交互协作完成任务;模拟经济或社会系统中,代表不同个体的代理相互交互;自动驾驶汽车网络中的车辆代理和交通控制代理相互通信以优化交通流;一个软件系统中,负责用户交互、数据库查询、后台计算、日志记录等不同功能的代理通过消息队列协调工作;电子市场中的买家和卖家代理自动议价等,都是Multi Agent Systems的实际应用。
为了更直观地理解这三个概念,我们可以用一个比喻:AI Agent如同一个“工人”,这个工人可以是初级水平,也能是高级专家;Agentic AI描述的是这个“工人”具备了“高级专家”级别的能力,能够自行理解复杂任务、制定计划、运用各种工具,独立完成整个项目,无需老板步步指导;MultiAgentSystem则像是一个“公司”或“团队”,由众多“工人”(AI Agent)组成,这些工人需要相互沟通、协作(或竞争),共同完成单个工人无法承担的巨大项目,其中部分工人可能就是具备Agentic AI能力的“高级专家”。
二、发展预测:技术突破引领产业变革,社会影响与挑战并存
(一)技术突破:迈向更智能、更协同的未来
- AI Agent:未来,AI Agent将朝着更加智能化的方向大步迈进,其自主学习和决策能力将显著增强。通过不断优化算法和模型,它能够更快速、准确地感知环境变化,做出合理决策。例如在智能家居场景中,AI Agent控制的设备不仅能根据用户习惯自动调节,还能在遇到突发情况时自主应对。
- Agentic AI:将进一步融合深度学习、强化学习等先进技术,实现更高阶的认知和推理能力。在复杂场景中,它能够更深入地理解任务需求,制定出更精准、高效的解决方案。比如在医疗领域,Agentic AI可以协助医生进行复杂疾病的诊断和治疗方案制定,凭借强大的推理能力分析各种数据,提供可靠建议。
- MultiAgent Systems:更加注重协作机制的创新,通过优化算法和通信协议,实现更高效、更可靠的群体协同。在智能交通管理中,不同车辆的Agent和交通设施的Agent之间能够更流畅地通信和协作,有效缓解交通拥堵,提高交通效率。
(二)产业落地:赋能千行百业,重塑产业格局
- AI Agent:将广泛渗透到智能制造、智慧城市、智慧医疗等众多领域,成为推动产业升级的关键力量。在智能制造中,AI Agent可用于生产过程的优化控制,提高生产效率和产品质量;在智慧城市建设中,它能协助管理城市基础设施,提升城市运行的智能化水平。
- Agentic AI:将在金融、教育、交通等关键领域发挥重要作用,大幅提升服务质量和效率。在金融领域,它可以进行智能投资决策,根据市场变化快速调整投资策略;在教育领域,能为学生提供个性化学习方案,满足不同学生的学习需求。
- MultiAgent Systems:在大型复杂项目中扮演核心角色,如智慧城市交通管理、大型物流仓储等。通过多个Agent的协同作业,实现资源的最优配置,降低成本,提高效益。例如在大型物流仓储中,不同功能的Agent协同管理货物存储、分拣和运输,提高物流运作效率。
(三)社会影响:生产力飞跃与挑战并存
- 积极影响:AI Agent、Agentic AI和MultiAgent Systems的发展将推动生产力实现质的飞跃,极大地提高生产效率和质量。它们能够承担大量重复性、规律性工作,释放人类的创造力,让人们将更多精力投入到更具价值的创新活动中。
- 挑战:这些技术的发展也可能引发就业结构的变化,对部分传统职业造成冲击。例如一些简单重复性的工作岗位可能被智能Agent取代。同时,随着AI技术的广泛普及,伦理和隐私问题日益凸显。比如AI决策的公正性、数据隐私保护等,都需要社会各界共同努力,加强监管和防范。
(四)挑战应对:突破瓶颈,保障安全与信任
- 技术瓶颈突破:加大研发投入,集中力量攻克技术难题。例如针对AI Agent和Agentic AI中存在的幻觉控制、实时性等问题,通过创新算法和架构设计加以解决。
- 安全防御:构建完善的安全防御体系,确保AI系统的稳定运行和数据安全。采用加密技术、访问控制等手段,防止AI系统被攻击和数据泄露。
- 社会接受度培育:通过科普教育、政策引导等多种方式,提高公众对AI技术的认知度和信任度。让人们了解AI技术的优势和潜在风险,积极引导公众正确看待和使用AI技术。
三、终极展望:三位一体融合,开启AI新纪元
从发展趋势来看,2025 - 2027年,单点Agent将逐渐普及,深入到人们生活和工作的各个角落;Agentic AI将重塑工作流程,让工作变得更加高效、智能;MultiAgent Systems则会重构组织形态,推动组织向更加灵活、协同的方向发展。到2030年以后,这三类技术有望融合为“感知 - 决策 - 执行”闭环,使AI从单纯的工具逐渐蜕变为真正的“数字同事”,与人类实现更加紧密、高效的协作,共同开创美好的未来。但需注意的是,技术发展充满不确定性,如AGI(通用人工智能)的突破等重大技术突变,可能会加速这一进程。因此,企业应密切关注技术动态,把握垂直场景深耕、混合云部署、伦理合规等战略支点,在AI时代的浪潮中抢占先机。
更多技术内容
更多技术内容可参见
《GPT多模态大模型与AI Agent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】书籍。
更多的技术交流和探讨也欢迎加我个人微信chenjinglei66。
总结
此文章有对应的配套新书教材和视频:
【配套新书教材】
《GPT多模态大模型与AI Agent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】
新书特色:《GPT多模态大模型与AI Agent智能体》(跟我一起学人工智能)是一本2025年清华大学出版社出版的图书,作者是陈敬雷,本书深入探讨了GPT多模态大模型与AI Agent智能体的技术原理及其在企业中的应用落地。
全书共8章,从大模型技术原理切入,逐步深入大模型训练及微调,还介绍了众多国内外主流大模型。LangChain技术、RAG检索增强生成、多模态大模型等均有深入讲解。对AI Agent智能体,从定义、原理到主流框架也都进行了深入讲解。在企业应用落地方面,本书提供了丰富的案例分析,如基于大模型的对话式推荐系统、多模态搜索、NL2SQL数据即席查询、智能客服对话机器人、多模态数字人,以及多模态具身智能等。这些案例不仅展示了大模型技术的实际应用,也为读者提供了宝贵的实践经验。
本书适合对大模型、多模态技术及AI Agent感兴趣的读者阅读,也特别适合作为高等院校本科生和研究生的教材或参考书。书中内容丰富、系统,既有理论知识的深入讲解,也有大量的实践案例和代码示例,能够帮助学生在掌握理论知识的同时,培养实际操作能力和解决问题的能力。通过阅读本书,读者将能够更好地理解大模型技术的前沿发展,并将其应用于实际工作中,推动人工智能技术的进步和创新。
【配套视频】
GPT多模态大模型与AI Agent智能体书籍本章配套视频 - 第1章 大模型技术原理【陈敬雷】
视频特色: 前沿技术深度解析,把握行业脉搏
揭秘 DeepSeek、Sora、GPT-4 等多模态大模型的技术底层逻辑,详解 Transformer 架构如何突破传统神经网络局限,实现长距离依赖捕捉与跨模态信息融合。
对比编码预训练(BERT)、解码预训练(GPT 系列)及编解码架构(BART、T5)的技术差异,掌握大模型从 “理解” 到 “生成” 的核心逻辑。
实战驱动,掌握大模型开发全流程
提示学习与指令微调:通过 Zero-shot、Few-shot 等案例,演示如何用提示词激活大模型潜能,结合 LoRA 轻量化微调技术,实现广告生成、文本摘要等场景落地(附 ChatGLM3-6B 微调实战代码)。
人类反馈强化学习(RLHF):拆解 PPO 算法原理,通过智谱 AI 等案例,掌握如何用人类偏好优化模型输出,提升对话系统的安全性与实用性。
智能涌现与 AGI 前瞻,抢占技术高地
解析大模型 “智能涌现” 现象(如上下文学习、思维链推理),理解为何参数规模突破阈值后,模型能实现从 “量变” 到 “质变” 的能力跃升。
前瞻通用人工智能(AGI)发展趋势,探讨多模态模型(如 Sora)如何推动 AI 从 “单一任务” 向 “类人智能” 进化,提前布局未来技术赛道。
上一篇:《GPT多模态大模型与AI Agent智能体》系列一》大模型技术原理 - 大模型技术的起源、思想
下一篇:DeepSeek大模型技术系列五》DeepSeek大模型基础设施全解析:支撑万亿参数模型的幕后英雄