深度学习01_如何计算输入和输出

本文介绍了Python中Tensor的通道排序以及卷积操作的基本概念。以3x32x32的RGB图像为例,解释了卷积层的计算过程,如使用nn.Conv2d(3,16,5)构建的卷积层,通过公式(N=(W-F+2P)/S+1)得出输出尺寸为(16,28,28)。内容涵盖了卷积核大小、步长、填充对输出尺寸的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. Python Tensor 的通道排序:[batch, channel, height, width] ,其中batch是指一批图像的个数。
    例如彩图像RGB:3x32x32, 其中channel=3, height=32, width= 32
  2. 卷积之后的矩阵尺寸大小计算公式为:N = (W - F + 2P)/ S + 1
    (1) 输入图片的大小:W x W
    (2) 步长 S
    (3) Filter大小 FxF [卷积核大小]
    (4) padding的像素数P(默认为零)
    举例计算
    input (3, 32, 32)
    构建一个卷积层: self.conv1 = nn.Conv2d(3, 16, 5)
    output (?)
    计算:根据公式得 N = (32 - 5 + 2 x 0)/ 1 + 1 = 28
    所以output (16, 28, 28) , 其中16是因为:nn.Conv2d(3,16,5)输出层矩阵与卷积核保持一致
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值