- Python Tensor 的通道排序:[batch, channel, height, width] ,其中batch是指一批图像的个数。
例如彩图像RGB:3x32x32, 其中channel=3, height=32, width= 32 - 卷积之后的矩阵尺寸大小计算公式为:N = (W - F + 2P)/ S + 1
(1) 输入图片的大小:W x W
(2) 步长 S
(3) Filter大小 FxF [卷积核大小]
(4) padding的像素数P(默认为零)
举例计算
input (3, 32, 32)
构建一个卷积层: self.conv1 = nn.Conv2d(3, 16, 5)
output (?)
计算:根据公式得 N = (32 - 5 + 2 x 0)/ 1 + 1 = 28
所以output (16, 28, 28) , 其中16是因为:nn.Conv2d(3,16,5)输出层矩阵与卷积核保持一致
深度学习01_如何计算输入和输出
于 2022-07-30 21:52:07 首次发布