自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 收藏
  • 关注

原创 datawhale happy-llm 快乐学习大模型第二次打卡

happyy llm第二次学习。

2025-06-19 02:10:10 132

原创 datawhale happy-llm 快乐学习大模型第一次打卡

本文介绍了词向量与文本处理的几个关键技术点:词向量表示方法:从one-hot编码到分布式表示,通过词共现矩阵和矩阵分解(如SVD)构建词向量,解决传统VSM的维度灾难问题。文档向量构建:基于TF-IDF加权的词向量组合,解释了文档-词项矩阵的构造原理和TF-IDF的权重分配策略,比较了不同加权方法的效果。

2025-06-17 00:11:13 473

原创 datawhale fun-transformer 第一次打卡

attention不在将整个序列编码为固定长的向量c,而是一个向量的序列,解决信息丢失和信息过长的问题。2:seq 2seq是目的,输入一个序列,输出一个序列。rnn最后输出上下文向量,是基于之前的输入元素和隐藏元素的一个总和向量。5:每个编码过后的词向量,有空间距离,距离近代表相似,距离远代表不相似。解码器接受编码器输出的上下文向量,一次合成目标序列各个元素。一开始向量长度固定,会有损失,padding叫做。将一个句子不同长度的词编成一个向量,会有损失。能够很好的和cnn,rnn等兼容。

2025-01-15 23:39:32 204

原创 datawhale 人工智能现代方法第一次打卡

人工智能的发展过程关键节点

2023-01-19 01:50:35 186

原创 datawhale第六次任务打卡

onnx 模型部署, pytorch常用的生态简介

2022-10-24 02:49:21 940

原创 datawhale 第五次任务打卡

pytorch可视化

2022-10-22 02:49:29 191

原创 datawhale第四次打卡

pytorch少高级使用,数据增强等

2022-10-20 02:31:26 673

原创 Datawhale 第三次打卡,第一天学习。

第三次打卡datawhale

2022-10-17 01:24:35 238

原创 Datawhale 第二次打卡第一天记录

第二次打卡第一天记录

2022-10-15 01:04:05 455

原创 datawhale打卡学习第二天

第二天学习

2022-10-12 00:38:12 234

原创 datawhle_pytorch第一次打卡学习(1)

pytorch基本安装和命令,以及一些jupyter命令

2022-10-11 01:58:45 379 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除