【JUC】第八章:共享模型之工具(线程池、ThreadLocal原理)

一、 线程池

线程池:一个容纳多个线程的容器,容器中的线程可以重复使用,省去了频繁创建和销毁线程对象的操作。

线程池作用:

  1. 降低资源消耗,减少了创建和销毁线程的次数,每个工作线程都可以被重复利用,可执行多个任务。
  2. 提高响应速度,当任务到达时,如果有线程可以立即开始执行任务,无需等待新线程的创建。由于减少了线程创建和销毁的延迟,应用程序能够更快地响应新的任务请求。
  3. 提高线程的客观理性:如果无限制的创建线程,不仅会消耗系统资源,还会降低系统的稳定新,使用线程池可以进行统一的分配,调优和监控。

线程池的核心思想:线程服用,同一个线程可以被重复使用,来处理多个任务。

池化技术:

1.1 自定义线程池

public class demo4 {
   
   
    public static void main(String[] args) {
   
   
        ThreadPool threadPool = new ThreadPool(
            1, 1000, TimeUnit.MILLISECONDS, 1,
            (queue, task) -> {
   
   
                // 1.死等
                //                    queue.put(task);
                // 2.带超时等待
                //                    queue.offer(task, 1500, TimeUnit.MILLISECONDS);
                // 3.让调用者放弃任务执行
                //                    System.out.println("放弃");
                // 4.让调用者自己抛出异常
                //                    throw new RuntimeException();
                // 5.让调用者自己运行任务
                task.run();
            }
        );
        for (int i = 0; i < 10; i++) {
   
   
            int j = i;
            threadPool.execute(() -> {
   
   
                try {
   
   
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
   
   
                    e.printStackTrace();
                }
                System.out.println("aaa" + j);
            });
        }
    }
}

class BlockingQueue<T> {
   
   
    // 任务队列
    private Deque<T> queue = new ArrayDeque<>();
    // 锁
    private ReentrantLock lock = new ReentrantLock();
    // 生产者条件变量
    private Condition fullWaitSet = lock.newCondition();
    // 消费者条件变量
    private Condition emptyWaitSet = lock.newCondition();

    private int capacity;

    public BlockingQueue(int capacity) {
   
   
        this.capacity = capacity;
    }

    // 添加元素
    public void put(T element) {
   
   
        lock.lock();
        try {
   
   
            // 首先看队列是否已满
            while (queue.size() == capacity) {
   
   
                try {
   
   
                    fullWaitSet.await();
                } catch (InterruptedException e) {
   
   
                    throw new RuntimeException(e);
                }
            }
            queue.addLast(element);
            emptyWaitSet.signalAll();
        } finally {
   
   
            lock.unlock();
        }


    }

    public T poll(long mills, TimeUnit unit) {
   
   
        lock.lock();
        try {
   
   
            long time = unit.toNanos(mills);
            while (queue.isEmpty()) {
   
   
                try {
   
   
                    if (time <= 0) {
   
   
                        return null;
                    }
                    time = emptyWaitSet.awaitNanos(time);
                } catch (InterruptedException e) {
   
   
                    throw new RuntimeException(e);
                }
            }
            T t = queue.removeFirst();
            fullWaitSet.signal();
            return t;
        } finally {
   
   
            lock.unlock();
        }
    }

    // 获取元素
    public T take() {
   
   

        lock.lock();
        try {
   
   
            // 如果队列为空,则等待
            while (queue.isEmpty()) {
   
   
                try {
   
   
                    emptyWaitSet.await();
                } catch (InterruptedException e) {
   
   
                    throw new RuntimeException(e);
                }
            }
            T element = queue.removeFirst();
            fullWaitSet.signal();
            return element;
        } finally {
   
   
            lock.unlock();
        }
    }

    public boolean offer(T element, long mills, TimeUnit unit) {
   
   
        lock.lock();
        try {
   
   
            long time = unit.toNanos(mills);
            while (queue.size() == capacity) {
   
   
                if (time <= 0) {
   
   
                    return false;
                }
                try {
   
   
                    time = fullWaitSet.awaitNanos(time);
                } catch (InterruptedException e) {
   
   
                    throw new RuntimeException(e);
                }
            }
            queue.addLast(element);
            emptyWaitSet.signal();
            return true;
        } finally {
   
   
            lock.unlock();
        }
    }

    public int size() {
   
   
        lock.lock();
        try {
   
   
            return queue.size();
        } finally {
   
   
            lock.unlock();
        }
    }

    public void tryPut(RejectPolicy<T> rejectPolicy, T element) {
   
   
        lock.lock();
        try {
   
   
            if (queue.size() == capacity) {
   
   
                rejectPolicy.reject(this, element);
            } else {
   
   
                queue.addLast(element);
                emptyWaitSet.signal();
            }
        } finally {
   
   
            lock.unlock();
        }
    }
}

@FunctionalInterface
interface RejectPolicy<T> {
   
   
    void reject(BlockingQueue<T> queue, T task);
}

// 线程池
class ThreadPool {
   
   
    // 任务队列
    private BlockingQueue<Runnable> taskQueue;
    // 线程集合
    private HashSet<Worker> workers = new HashSet<>();
    // 核心线程数
    private int coreSize;
    // 获取任务的超时时间
    private long timeout;
    private TimeUnit timeUnit;
    // 拒绝策略
    private RejectPolicy<Runnable> rejectPolicy;

    public ThreadPool(int coreSize, long timeout, TimeUnit timeUnit, int queueCapacity, RejectPolicy<Runnable> rejectPolicy) {
   
   
        this.taskQueue = new BlockingQueue<>(queueCapacity);
        this.coreSize = coreSize;
        this.timeout = timeout;
        this.timeUnit = timeUnit;
        this.rejectPolicy = rejectPolicy;
    }

    class Worker extends Thread {
   
   
        private Runnable task;

        public Worker(Runnable task) {
   
   
            this.task = task;
        }

        @Override
        public void run() {
   
   
            while (task != null || (task = taskQueue.poll(timeout, timeUnit)) != null) {
   
   
                try {
   
   
                    task.run();
                } catch (Exception e) {
   
   
                    e.printStackTrace();
                } finally {
   
   
                    task = null;
                }
            }
            // 如果一直没有任务了,那就销毁该线程
            synchronized (workers) {
   
   
                workers.remove(this);
            }
        }
    }

    public void execute(Runnable task) {
   
   
        synchronized (workers) {
   
   
            // 如果当前线程总数小于核心线程数,可以直接创建线程
            if (workers.size() < coreSize) {
   
   
                Worker worker = new Worker(task);
                workers.add(worker);
                worker.start();
            } else {
   
   
                // 执行拒绝策略
                taskQueue.tryPut(rejectPolicy, task);
            }
        }
    }
}
  • 阻塞队列BlockingQueue用于暂存来不及被线程执行的任务
    • 也可以说是平衡生产者和消费者执行速度的差异。
    • 里面的获取任务和放入任务用到了生产者消费者模式
  • 线程池中对Thread进行了再次的封装,封装为Worker
    • 在调用任务对象的run方法时,线程会去执行该任务,执行完毕后还会到阻塞队列中获取新任务来执行。
  • 线程池中执行任务的主要方法为execute方法
    • 执行时要判断正在执行的线程数是否大于了线程池容量

1.2 ThreadPoolExecutor

1.2.1 线程池状态

ThreadPoolExecutor 使用int的高三位来表示线程池状态,低29为表示线程数量。

状态名 高3位 接收新任务 处理阻塞队列任务 说明
RUNNING 111 Y Y
SHUTDOWN 000 N Y 不会接受新任务,但会处理阻塞队列剩余队伍
STOP 001 N N 会中断正在执行的任务,并抛弃阻塞队列任务。
TIDYING 010 - - 任务全执行完毕,活动线程为0,即将进入终结
TERMINATED 011 - - 终结状态

从数字上比较,TERMINATED > TIDYING > STOP > SHUTDOWN > RUNNING

为什么要将线程池状态和线程数量存在一个变量里面呢?

目的是将线程池状态与线程个数合并,这样在赋值的时候就可以使用一次CAS原子操作进行赋值。

// c 为旧值, ctlOf 返回结果为新值 
ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c)))); 
// rs 为高 3 位代表线程池状态, wc 为低 29 位代表线程个数,ctl 是合并它们 
private static int ctlOf(int rs, int wc) {
   
    return rs | wc; }

1.2.2 构造方法

public ThreadPoolExecutor(int corePoolSize, 
                          int maximumPoolSize, 
                          long keepAliveTime, 
                          TimeUnit unit, 
                          BlockingQueue<Runnable> workQueue, 
                          ThreadFactory threadFactory, 
                          RejectedExecutionHandler handler)
  • corePoolSize:核心线程数(最多保留的线程数)
  • maximumPoolSize:最大线程数目
  • keepAliveTime:生存时间(针对救急线程)
  • workQueue:阻塞队列
  • threadFactory:线程工程(可以给线程创建时起个好名字)
  • handler:拒绝策略

工厂方式:

  1. 线程池刚开始没有线程,当一个任务提交给线程池后,线程池会创建一个新线程来执行任务。
  2. 当线程数达到corePoolSize而且没有线程空闲,这时再加入任务,新加的任务会被加入workQueue队列排队,直到有空闲的线程。
  3. 如果队列选择了有界队列,那么任务超过了队列大小时,会创建maximumPoolSize - corePoolSize个救济线程来救济。
  4. 如果线程到达maximumPoolSize仍然有新任务,这时会执行拒绝策略。拒绝策略 jdk 提供了 4 种实现,其它 著名框架也提供了实现
    1. AbortPolicy 让调用者抛出 RejectedExecutionException 异常,这是默认策略
    2. DiscardPolicy 放弃本次任务
    3. DiscardOldestPolicy 放弃队列中最早的任务,本任务取而代之
    4. Dubbo 的实现,在抛出 RejectedExecutionException 异常之前会记录日志,并 dump 线程栈信息,方便定位问题
    5. Netty 的实现,是创建一个新线程来执行任务
    6. ActiveMQ 的实现,带超时等待(60s)尝试放入队列,类似我们之前自定义的拒绝策略
    7. PinPoint 的实现,它使用了一个拒绝策略链,会逐一尝试策略链中每种拒绝策略
  • 当高峰过去后,超过corePoolSize 的救急线程如果一段时间没有任务做,需要结束节省资源,这个时间由 keepAliveTime 和 unit 来控制。

根据这个构造方法,JDK Executors 类中提供了众多工厂方法来创建各种用途的线程池。

1.2.3 newFixedThreadPool

public static ExecutorService newFixedThreadPool(int nThreads) {
   
   
return new ThreadPoolExecutor(nThreads, nThreads,
                              0L, TimeUnit.MILLISECONDS,
                              new LinkedBlockingQueue<Runnable>());
}
  • 核心线程数==最大线程数(没有救急线程被创建)
  • 阻塞队列是无界的,可以放任意数量的任务。

该线程池适用于任务量已知,相对耗时的任务。

1.2.4 newCachedThreadPool

public static ExecutorService newCachedThreadPool() {
   
    
    return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 
                                  60L, TimeUnit.SECONDS, 
                                  new SynchronousQueue<Runnable>()); 
}
  • 核心数是0,最大线程数是 Integer.MAX_VALUE,救急线程的空闲生存时间是 60s,意味着全部都是救急线程(60s后可以回收),救济线程可以无限创建

队列采用了 SynchronousQueue 实现特点是,它没有容量,没有线程来取是放不进去的(一手交钱、一手交货)

SynchronousQueue<Integer> integers = new SynchronousQueue<>();
new Thread(() -> {
   
   
    try {
   
   
        log.debug("putting {} ", 1);
        integers.put(1);
        log.debug("{} putted...", 1);
        log.debug("putting...{} ", 2);
        integers.put(2);
        log.debug("{} putted...", 2);
    } catch (InterruptedException e) {
   
   
        e.printStackTrace();
    }
}, "t1").start();
sleep(1);
new Thread(() -> {
   
   
    try {
   
   
        log.debug("taking {}", 1);
        integers.take();
    } catch (InterruptedException e) {
   
   
        e.printStackTrace();
    }
}, "t2").start();
sleep(1);
new Thread(() -> {
   
   
    try {
   
   
        log.debug("taking {}", 2);
        integers.take();
    } catch (InterruptedException e) {
   
   
        e.printStackTrace();
    }
}, "t3").start();
11:48:15.500 c.TestSynchronousQueue [t1] - putting 1  
11:48:16.500 c.TestSynchronousQueue [t2] - taking 1  
11:48:16.500 c.TestSynchronousQueue [t1] - 1 putted...  
11:48:16.500 c.TestSynchronousQueue [t1] - putting...2  
11:48:17.502 c.TestSynchronousQueue [t3] - taking 2  
11:48:17.503 c.TestSynchronousQueue [t1] - 2 putted...

整个线程池表现为线程数会根据任务量不断增长,没有上限,当任务执行完毕,空闲 1分钟后释放线程。 适合任务数比较密集,但每个任务执行时间较短的情况。

1.2.5 newSingleThreadExecutor

public static ExecutorService newSingleThreadExecutor() {
   
    
    return new FinalizableDelegatedExecutorService 
    (new ThreadPoolExecutor(1, 1, 
                            0L, TimeUnit.MILLISECONDS, 
                            new LinkedBlockingQueue<Runnable>())); 
}

使用场景:

希望多个任务排队执行。线程数固定为1,任务数多于1时,会放入无界队列排队。任务执行完毕,这唯一的线程也不会被释放。

区别:

  • 自己创建一个单线程串行执行任务,如果任务执行失败而终止那么没有任何补救措施,而线程池还会创建一个线程,保证池的正常工作。
  • Executors.newSingleThreadExecutor() 线程个数始终为1,不能修改FinalizableDelegatedExecutorService 应用的是装饰器模式,只对外暴露了 ExecutorService 接口,因 此不能调用 ThreadPoolExecutor 中特有的方法
  • Executors.newFixedThreadPool(1) 初始时为1,以后还可以修改 对外暴露的是 ThreadPoolExecutor 对象,可以强转后调用 setCorePoolSize 等方法进行修改

1.2.6 提交任务

// 执行任务 
void execute(Runnable command); 
// 提交任务 task,用返回值 Future 获得任务执行结果 
<T> Future<T> submit(Callable<T> task); 
// 提交 tasks 中所有任务 
<T> List<Future<T>> invokeAll(Collection<? extends Callable<T
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值