- 博客(6)
- 收藏
- 关注
原创 张正友标定法
相机标定的目的之一是为了建立物体从三维世界到成像平面上各坐标点的对应关系,所以首先我们需要定义这样几个坐标系来为整个过程做好铺垫:世界坐标系:用户定义的三维世界的坐标系,为了描述目标物在真实世界里的位置而被引入,单位为m;相机坐标系:在相机上建立的坐标系,为了从相机的角度描述物体位置而定义,作为沟通世界坐标系和像素坐标系的中间一环,单位为m;图像物理坐标系:为了描述成像过程中物体从相机坐标系到图像坐标系的投影透射关系而引入,方便进一步得到像素坐标系下的坐标,单位为m;像素坐标系。
2025-04-08 16:53:51
1010
原创 第五门课--序列模型
我们把第一个单词输入一个神经网络层,其预测值为当读到句中的第二个单词时,它不是仅用就输出预测值,它同时也会输入一些来自时间步1的激活值信息到时间步2。然后在时间步3中,它不是仅用就输出预测值,它同时也会输入一些来自时间步2的激活值信息到时间步3。以此类推,一直到输出。要开始整个流程,在零时刻需要构造一个激活值,这通常是零向量。我们用来表示管理着从到隐藏层的连接的一系列参数。同时每一个时间步都使用相同的参数。同样的输出结果由决定。
2025-03-06 15:12:36
877
原创 第四门课--卷积神经网络
构建卷积层时,你要决定过滤器的大小究竟是1×1(,3×3还是5×5,或者要不要添加池化层。而Inception网络的作用就是代替你来决定,虽然网络架构因此变得更加复杂,但网络表现却非常好,我们来了解一下其中的原理。假如有28×28×192维度的输入层,如果使用1×1卷积,假设输出为28×28×64如果使用3×3卷积,假设输出为28×28×128如果使用5×5卷积,假设输出为28×28×32假如使用池化操作,假设池化输出是28×28×32有了这样的Inception。
2025-03-06 15:12:12
859
原创 第一门课--深度学习基础
我们有输入特征,它们被竖直地堆叠起来,这叫做神经网络的输入层。它包含了神经网络的输入。第一层我们称之为隐藏层(四个结点):在一个神经网络中,当你使用监督学习训练它的时候,训练集包含了输入也包含了目标输出。你能看见输入的值,你也能看见输出的值,但是隐藏层中的东西,在训练集中你是无法看到的。最后一层只由一个结点构成,而这个只有一个结点的层被称为输出层,它负责产生预测值。现在再引入几个符号,就像我们之前用向量表示输入特征。这里有个可代替的记号可以用来表示输入特征。
2025-03-06 15:11:03
913
原创 pytorch安装
nvidia-smi 显示的版本是驱动的版本,而nvcc -V 显示的版本是cuda toolkit的版本。由于驱动版本是向下兼容的, 因此cuda toolkit版本小于等于驱动版本都可以正常使用。在虚拟环境py37中conda install E:\study\software\CUDA\cudatoolkit-11.6.0-hc0ea762_10.tar.bz2。pytorch, cudadnn等要求的cuda版本都是指cuda toolkit的版本。,输出 CUDA 版本即为版本切换成功。
2024-10-14 10:27:02
297
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人