多类别异常检测的统一模型 文章链接:点这里 源码链接:点这里 研究目的 1.解决多类别异常检测的挑战 现有的异常检测方法通常需要为每个类别单独训练模型,如Figure1图(c)所示,这种方法在类别数量增加时会消耗大量资源,并且在处理具有较大类内多样性的数据时表现不佳。本文提出了一种统一的多类别异常检测模型UniAD,旨在通过一个模型处理多个类别的异常检测任务,如Figure1图(d)所示,同时避免为每个类别单独训练模型的弊端。 <