A Unified Model for Multi-class Anomaly Detection

多类别异常检测的统一模型 

文章链接:点这里

源码链接:点这里

 研究目的

1.解决多类别异常检测的挑战

现有的异常检测方法通常需要为每个类别单独训练模型,如Figure1图(c)所示,这种方法在类别数量增加时会消耗大量资源,并且在处理具有较大类内多样性的数据时表现不佳。本文提出了一种统一的多类别异常检测模型UniAD,旨在通过一个模型处理多个类别的异常检测任务,如Figure1图(d)所示,同时避免为每个类别单独训练模型的弊端。

<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值