自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 nnUNetv1在linux平台上训练自己的数据集

如上图所示,在下面的虚线框里显示了占用GPU的进程信息。max_num_epochs修改完,需要重新运行pip install . 进行本地编译,否则不会生效。原本的数据是以不同的病原体类型为目录,以患者id、日期、序列等为文件名的nii.gz格式的CT图像。但是,这样只能查看某一时刻的显卡使用情况。为了实时显示显卡的使用情况,可以添加参数。去年9月份跑过的一个模型,效果挺好的,但貌似现在只有v2,没有v1了,之后再整理一下v2的笔记吧。nnUNet对数据集的名称特别严格,因此需要按照它的标准进行转换。

2024-01-19 11:51:14 1160 3

原创 1X1卷积

在学习1x1卷积之前,我们先对多通道卷积进行简单的回顾,这样更方便对1x1卷积的理解多通道卷积是将各通道的卷积后对应位置累加求和,简单的说就是。

2023-06-30 22:52:23 2162

原创 编译原理(期末复习笔记)

编译技术原理及方法

2023-06-20 16:36:06 1495

原创 [论文学习]Contrastive Language-Image Pre-training(CLIP)

CLIP的英文全称是Contrastive Language-Image Pre-training,即一种基于对比文本-图像对的预训练方法或者模型。 CLIP是一种基于对比学习的多模态模型,与CV中的一些对比学习方法如moco和simclr不同的是, CLIP的训练数据是文本-图像对:一张图像和它对应的文本描述 。

2023-06-11 09:08:56 3076 1

原创 MMdetection测试和评估模型(各种命令)

打开文件的属性,关闭“只读”(关闭前记得先关闭pycharm,否则下次打开还是“只读”)(3)文件目录的权限没有打开。(2)文件处在打开状态。(1)文件目录写错了。

2023-06-06 15:23:14 1192 3

原创 使用MMDetection训练自己的数据集(COCO)

上一篇文章,我们已经搭建了MMDetection的环境,并将染色体数据从labelme转化为coco数据这篇文章将以maskrcnn为例,展示染色体分类的训练测试过程人体的染色体有24类,1-22号常染色体 23是x染色体 24是y染色体。

2023-06-03 09:00:00 6140 11

原创 windows安装MMDetection并测试

1、创建python=3.9.16,pytorch-cuda=11.8,pytorch=2.0.1的虚拟环境并下载GPU版pytorch。在终端输入 conda config --set auto_activate_base false ,即可。这个需要安装mmcv-full,而mmcv-full需要安装CUDA,CUDANN并添加系统环境变量。先将所有数据集目录进行重构到一个目录底下并对文件进行重命名。然而我的C盘不足,暂时还无法安装CUDA。采用官网提供的验证是否安装成功的方法。

2023-06-02 20:44:35 703 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除