- 博客(15)
- 收藏
- 关注
原创 基于活动轮廓算法的图像分割
源自 scikit-image 文档的如下例子中的活动轮廓模型将被用来通过在人脸边缘拟合样条曲线,将宇航员的脸与图像的其余部分分割开来。如下代码演示了如何使用 active_contour()函数进行分割(函数运行一个迭代算法,其中迭代算法的最大迭代次数可以由函数的参数指定),并显示在不同的迭代次数(max_iteration)下,在内部运行算法得到的闭合轮廓线。该算法围绕感兴趣的目标初始化蛇,并让它收缩或膨胀,以便于使封闭的轮廓与感兴趣的目标相拟合。要确保初始的“蛇”有足够的点来捕捉最终轮廓的细节。
2022-09-05 15:57:45
2583
1
原创 基于图像分割与颜色量化的 k 均值聚类算法
将演示如何对 Astronaut图像执行像素矢量量化(Vector Quantization,VQ),将显示图像所需的颜色数量从 250 种减少到 4 种,同时保持整体外观质量。在本例中,像素在三维空间中表示,使用 k 均值查找 4 个颜色簇。在图像处理文献中,码本是从 k 均值(簇群中心)获得的,称为调色板。在调色板中,使用 1 个字节最多可寻址 256 种颜色,而 RGB 编码要求每个像素 3 个字节。可以看到,在保留的图像质量方面,k 均值聚类算法对于颜色量化的效果总是比使用随机码本要好。
2022-09-04 21:16:54
1056
原创 监督机器学习——基于手写数字数据集的图像分类
用 scikit-learn 库函数实现以下分类器:k 最近邻分类算法、高斯贝叶斯分类器、随机森林分类器、支持向量机分类器。
2022-09-04 19:48:50
1920
原创 python 使用接缝雕刻移除目标
对目标区域进行加权,因为在接缝雕刻中较低的权重被优先删除。如下代码使用了与原始输入照片形状相同的掩模图像,掩盖了包含低权重的狗图像的区域,这表明应该将其移除.以使用接缝雕刻从图像中去除目标或人工痕迹。
2022-09-04 17:58:00
220
原创 精确率/召回率/准确率
那么预测为正的样本就有两种可能来源,一种是把正的预测为正的,这类有TruePositive个, 另外一种是把负的错判为正的,这类有FalsePositive个,因此精确率即:P=TP/(TP+FP)召回率是相对于样本而言的,即样本中有多少正样本被预测正确了,这样的有TP个,所有的正样本有两个去向,一个是被判为正的,另一个是错判为负的,因此总共有TP+FN个,所以,召回率 R= TP / (TP+FN)准确率是指有在所有的判断中有多少判断正确的,即把正的判断为正的,还有把负的判断为负的;
2022-09-02 20:11:36
2267
原创 计算机视觉之PCA和特征脸
主成分分析(PCA)是一种统计/非监督机器学习方法,它使用一个正交变换将一组可能相关的变量的观测值转化为一组线性不相关的变量的值(称为主成分),从而在数据集中发现最大方向的方差(沿着主成分)。这可以用于(线性)降维(只有几个突出的主成分在大多数情况下捕获数据集中的几乎所有方差)和具有多个维度的数据集的可视化(在二维空间中)。PCA 的一个应用是特征脸,找到一组可以(从理论上)表示任意脸(作为这些特征脸的线性组合)的特征脸。
2022-09-02 18:43:49
2007
1
原创 当神经网络遇上GUI
这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Mar
2022-04-09 13:57:35
1698
2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人