10X空间转录组分析之转录组信息 & 空间位置的联合分析(SEDR)

hello,大家好,今天给大家继续分享10X空间转录组的分析,其实之前分享的内容已经多次强调过空间转录组一定要转录组信息和空间位置联合进行分析,大家可以参考之前我的文章10X空间转录组空间高变基因联合组织区域识别之SpatialDE210X空间转录组聚类分析之图卷积网络(graph convolutional network)10X空间转录组聚类分析之BayesSpace算法聚类等,就不给大家一一列举了,大家做研究的一定好多多学习。

今天给大家分享的联合方法的文章在Unsupervised Spatially Embedded Deep Representation of Spatial Transcriptomics,下面放一张分析的原理图

原理图大家也可以看到,需要计算临近矩阵,其实就是联合空间位置进行下游分析,非常值得大家的借鉴,好了,我们开始分享今天我们的分析内容,最后看一看示例代码。

Abstract

空间转录组学使我们能够剖析组织异质性并绘制出细胞间通讯(这里的通讯主要就是临近通讯)。转录组学数据和相关空间信息的最佳整合对于充分利用数据至关重要(转录组 & 空间位置)。作者开发了 SEDR,这是一种转录本和空间信息的无监督空间嵌入深度表示(转录组 & 空间位置联合分析)。 SEDR pipeline使用深度自动编码器构建基因表达的低维潜在表示,然后通过变分图自动编码器同时嵌入相应的空间信息。将 SEDR 应用于人类背外侧前额叶皮层数据并获得了更好的聚类精度,并通过轨迹分析正确追溯了产前皮层发育顺序。还发现 SEDR 表示非常适合批量集成。将 SEDR 应用于人类乳腺癌数据,在视觉上同质的肿瘤区域内识别出异质子区域,识别具有促炎微环境的肿瘤核心和富含肿瘤相关巨噬细胞的外环区域,该区域驱动免疫抑制微环境。

Introduction

单细胞组学技术能够以单细胞分辨率进行测量,并导致在健康和患病状态下的各种组织中发现新的亚群。然而,在高通量组学数据采集之前将组织分解为单个细胞会导致细胞空间信息丢失,从而阻碍我们剖析单个细胞的空间组织和细胞间相互作用的能力。虽然已经开发出计算工具来从配体和受体表达预测细胞间相互作用,但它们需要使用免疫组织化学 (IHC) 或免疫荧光 (IF) 进行验证。新兴的空间组学技术通过同时测量基因/蛋白质表达和细胞的空间位置来克服这些限制。这种组织学组织的空间解析转录组能够重建组织结构和细胞间相互作用。 这种方法已被证明在许多应用中很有价值,包括对脑部疾病、肿瘤微环境和胚胎发育的研究。
在当前可用的空间转录组学方法中,基于原位捕获的技术,例如 10x Genomics Visium 和 Nanostring GeoMX DSP,由于它们的accessibility和在每个spot内分析大量 mRNA 目标的能力而受到欢迎。原则上,来自组织样本的组织切片被透化,释放的 mRNA 被载玻片表面上空间排列的寡核苷酸或手动定义的感兴趣区域 (ROI) 中的预杂交 RNA 目标条形码捕获。然而,这两种技术都受到 mRNA 捕获区域的限制,最小直径通常为~50μm,比单个细胞大。为了克服这个问题,已经开发了几种计算方法来对空间点的细胞混合物进行去卷积。最近,mRNA 捕获方法的改进导致直径约 1-10μm 的亚细胞捕获区域更小。这些高分辨率空间转录组学方法可以获得具有更高空间保真度的空间解析转录组,而不会影响捕获的基因数量。它们包括 Slide-seq、DBiT-seq、Stereo-seq、PIXEL-seq 和 Seq-Scope,后三者迄今为止获得的最高分辨率(~1μm)。这些亚微米分辨率的方法通常需要voxel binning或细胞分割,以产生用于下游分析的基因-细胞表达矩阵。捕获区域的大小也得到了改善,从而提高了整体细胞通量,需要可以处理大空间数据的新计算方法。
在分析空间转录组学数据时,结合基因表达和空间信息来学习每个细胞或spot的判别式表示至关重要。然而,已建立的工作流程,例如 Seurat,仍然采用专为单细胞 RNA-seq 分析设计的管道,主要关注基因表达数据,而忽略了空间邻域的结构关系。最近,已经开发了几种新的空间转录组学方法来克服这一限制。例如,BayesSpace 从马尔可夫随机场 (MRF) 先验开始,该先验假设属于相同细胞类型的点应该彼此更接近,并使用贝叶斯方法更新模型。 Giotto 实施了一个隐马尔可夫随机场 (HMRF) 模型,通过比较细胞及其邻居之间的基因表达来检测具有连贯模式的域。 SpaGCN 结合空间距离和组织学差异来构建spot的加权图,然后使用图卷积网络 (GCN) 将该图与基因表达相结合以对spot进行聚类。 stLearn 利用对图像的深度学习模型来提取形态特征,并在其上计算形态距离。然后, stLearn使用形态距离和空间邻域信息根据每个spot的识别邻居来规
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值