文献分享---基于多视图图神经网络解释niche细胞间通讯

作者,Evil Genius
马上端午佳节了,大家有什么想玩的地方么?
大家还是要早点结婚,晚了就剩下了。
结婚还是挺累的。
今天我们分享文献

关于空间的通讯分析,其实分享了很多,从一开始用类似单细胞的方法,到考虑空间位置,再到分析信号流,到现在的分析niche内部和niche之间的细胞通讯,其实都是在强调通讯分析的时空特点。
尤其以下这种跨边界的通讯更是分析的重点。

知识积累
细胞通讯(CCC)是生物系统和谐运作的基本生物过程。越来越多的证据表明,同一类型或cluster的细胞在不同的生态位下可能表现出不同的相互作用模式,但大多数主流方法在细胞类型或cluster水平上进行CCC推断,同时忽略生态位异质性。细胞通讯(CCC)在维持体内平衡和应对外部刺激方面起着至关重要的作用。细胞相互作用主要发生在发送细胞分泌与接收细胞上的受体结合的配体时,从而激活特定的信号通路
STCase包括一个可解释的多视图图神经网络,通过CCC识别每种细胞类型的生态位,并揭示生态位特定的CCC事件。
单细胞通讯分析三剑客---cellphoneDB、Cellchat、Nichenet(三种方法全部详细分享过,大家可以会看文章或者视频)
However, CCC events are more likely to occur between neighboring cells.
同一类型的细胞可能存在于不同的生态位中,导致调节不同细胞功能的不同CCC事件。
空间通讯分析的方法---COMMOT、SpatialDM、SpaTalk和HoloNet(方法也全部分享过,大家可以会看文章或者视频)
最新的方法旨在结合基因表达、空间位置和组织学特征推断CCC事件。
核心niche + CCC。
结果一、模型概述(STCase)
这首先通过整合转录因子(TF)的细胞内信号通路和配体-受体对(LRP)激活的下游靶基因,在单细胞/spot水平上识别候选CCC事件,以提高结果的准确性。
包括四个步骤

1、汇总配体和受体的基因表达,计算主要CCC评分,考虑配体扩散。
2、置换检验推断有效的配受体事件。
3、使用SCENIC计算下游TF激活分数
4、初级CCC评分和TF激活评分以两种模式(方法)进行整合,即非严格模式和严格模式。在非严格模式下,当下游TF激活分数指示的细胞内信号通路没有激活时,预测的LRP仍然保留

STCase对细胞类型进行亚聚类,并根据综合CCC评分揭示特定生态位的CCC事件,包括四个步骤

1、基于空间邻接图(SAG)构建多视图GNN,该图包括空间坐标和ST数据中的基因表达,其中每个GNN视图对应一个LRP
2、the CCC scores are multiplied by the variable LRP weight, used as the edge weight to train an autoencoder-style model for encoding a latent representation
3、the latent representation undergoes inner product decoding and is iteratively optimized to reconstruct the original SAG as accurately as possible
4、潜在表示和LRP权重分别用于基于生态位的细胞类型亚聚类和生态位特异性CCC事件识别。

结果2、STCase的性能评估
当然了,都说自己的软件分析才是最好的。

结果3、STCase捕获人支气管中与免疫相关的CCC事件
STCase应用于人类支气管的ST数据集
有效地捕获空间接近的CCC事件。
LRP组织区域空间共表达检测。

结果4、揭示具有不同生态位的癌细胞亚型
口腔鳞状细胞癌(OSCC)ST数据集。
不同的生态位可能导致癌症细胞的不同特征,这促使进一步研究癌症细胞的状态。
结果5、识别SCC_LNN的特定生态位CCC事件
研究可能促进每种SCC亚型特定生物学功能的生态位特异性CCC事件。首先,从GNN模型中获得了特定生态位的CCC事件,发现它们中的大多数都富含SCC_LNN。
进一步对这些CCC事件进行了通路富集分析,发现最富集的通路与肿瘤侵袭、转移和预后不良有关。

最后,简单来看看代码,详细的教程在Tutorial — STCase 1.0 documentation
import pandas as pd
import numpy as np
import scanpy as sc
import STCase as st

DB_interaction = pd.read_csv('/home/user/data3/qij/project/cell_communication/interaction_database/selfdb_finalv/selfdb_human.csv',index_col=0)
DB_complex = pd.read_csv('/home/user/data3/qij/project/cell_communication/interaction_database/selfdb_finalv/selfdb_complex_human.csv',index_col=0)
DATABASES_GLOB = '/home/user/data3/qij/project/cell_communication/pySCENIC/databases/human_hg38_v10/*.genes_vs_motifs.rankings.feather'
MOTIF_ANNOTATIONS_FNAME = '/home/user/data3/qij/project/cell_communication/pySCENIC/resources/motifs-v10nr_clust-nr.hgnc-m0.001-o0.0.tbl'

adata_sp311 = sc.read_h5ad('../NG-lung/spdata/sp311_nonceco.h5ad')

adata_sp311_stringent = st.ccci.spatial_cell_communication_run(adata_sp311,
                                   DB_interaction,
                                   DB_complex,
                                   method='Hill',
                                   ct_key='cell_type',
                                   cell_type=None,
                                   if_hvg=False,
                                   if_filter=False,
                                   if_self=True,
                                   if_intra=True,
                                   if_stringent=True,
                                   DATABASES_GLOB=DATABASES_GLOB,
                                   MOTIF_ANNOTATIONS_FNAME=MOTIF_ANNOTATIONS_FNAME,
                                   background_number=1000,
                                   threads=10,
                                   scope=6,
                                   min_exp=0.1,
                                   cutoff=0.05)

可视化
st.pl.plot_CCI_network(adata_311_stringent,
                       level='all',
                       tp='weight'
                      )

st.pl.plot_CCI_chord(adata_311_stringent,
                       level='IL6|COMPLEX:IL6R_IL6ST',
                       tp='edge_num',
                       ct_list=cell_type_show,
                       ticks_interval=10
                    )

st.pl.plot_CCI_heatmap(adata_311_stringent,
                       level='CCL',
                       tp='weight_per',
                       ct_list=cell_type_show,
                      )

st.pl.plot_Community_spatial(adata_311_stringent,
                           level='IL6|COMPLEX:IL6R_IL6ST',
                           background_type='cell_type')

生活很好,有你更好
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值