深度学习笔记: 前馈神经网络(FFNN)

本文详细介绍了前馈神经网络(FFNN)的基本结构,包括输入、隐藏和输出层,强调了权重和偏差的作用,以及神经元的线性组合和非线性激活。此外,讨论了参数计数,区分了全连接网络和卷积神经网络,并提到了常见的激活函数和训练方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前馈神经网络(FFNN)

欢迎Star我的Machine Learning Blog:https://github.com/purepisces/Wenqing-Machine_Learning_Blog

定义:

前馈神经网络包括多个层次:输入层、一个或多个隐藏层和输出层。在FFNN中,数据单向流动——直接从输入到输出,没有循环。当使用多个隐藏层时,神经网络被称为“深度神经网络”,从而引入了“深度学习”的领域。

前馈过程:

给定已知的输入向量x和网络中的权重,我们可以计算输出向量\hat{y}

基本结构:

  • 输入层

    • 神经元的数量通常对应于输入数据的大小。
      • 例如:对于28x28像素的图像(如MNIST数据集中的图像),输入层有28×28=784个神经元,每个像素一个。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值