前馈神经网络(FFNN)
欢迎Star我的Machine Learning Blog:https://github.com/purepisces/Wenqing-Machine_Learning_Blog。
定义:
前馈神经网络包括多个层次:输入层、一个或多个隐藏层和输出层。在FFNN中,数据单向流动——直接从输入到输出,没有循环。当使用多个隐藏层时,神经网络被称为“深度神经网络”,从而引入了“深度学习”的领域。
前馈过程:
给定已知的输入向量
和网络中的权重,我们可以计算输出向量
。
基本结构:
-
输入层:
- 神经元的数量通常对应于输入数据的大小。
- 例如:对于28x28像素的图像(如MNIST数据集中的图像),输入层有28×28=784个神经元,每个像素一个。
- 神经元的数量通常对应于输入数据的大小。