自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

原创 L2-5 RAG开源项目综合应用

摘要:本文介绍了RAGFlow和FastGPT两款企业级知识库问答系统的构建工具。RAGFlow是一个开源的RAG引擎,提供可视化平台简化文档解析、索引构建和问答应用开发流程,特别适合快速搭建企业内部知识库系统。文章详细讲解了Windows环境下Docker安装配置步骤,包括WSL2设置和镜像源配置,并演示了RAGFlow的安装使用。同时介绍了FastGPT的部署方法,展示了如何结合网页爬取技术构建实时问答系统。两款工具都显著降低了企业级RAG系统的开发门槛,适用于处理多格式文档和特定领域知识问答场景。

2025-07-20 09:43:53 529

原创 L2-4 掌握RAG应用评估技能和工具

本文介绍了RAG(检索增强生成)应用的评估方法、指标及工具。评估RAG应用需考虑大模型输出的不确定性、知识库动态变化等因素,主要采用人工评估和自动化评估两种方法。评估依据包括输入问题、生成答案、上下文和参考答案,常见指标涵盖上下文相关性、精度、召回率、忠实度和答案相关性。评估类型分为检索评估和响应评估,分别关注上下文匹配度和生成质量。常用评估工具包括Ragas和Trulens,前者提供综合性评测框架,后者专注于评估改进。这些评估体系有助于确保RAG应用的性能和可靠性。

2025-07-15 23:23:49 358

原创 L2-3 基于LangChain的RAG系统优化实践

文章摘要 本文分析了RAG(检索增强生成)技术的商业化痛点及优化方案。RAG流程中的两大核心环节——索引构建(Index Process)和查询处理(Query Process)存在多个问题,如内容缺失、检索效率低、文档切分粒度不匹配、答案格式错误等。针对这些问题,提出了数据清洗、分块优化、提示词设计、重排技术等解决方案。此外,还介绍了Advanced RAG技术,通过预检索优化、检索优化和后检索优化三个阶段提升检索效果。文中还提供了模型配置代码示例,展示了如何通过LangChain调用不同平台的大模型。

2025-07-13 10:16:58 364

原创 L2-2 LangChainV0.3从入门到精通

LangChain是一个用于开发大语言模型(LLM)应用程序的开源框架,其核心价值在于将LLM能力与实际应用需求连接起来。框架提供标准化工具链,支持与200多种外部系统集成,重塑了AI开发范式。 LangChain体系包含核心库和扩展组件:langchain-core提供基础抽象;langchain-community支持第三方集成;LangGraph用于构建状态化应用;LangServe部署API服务;LangSmith提供开发运维平台。核心功能模块包括模型交互、数据连接、任务编排链、状态记忆、智能代理等

2025-06-15 09:07:36 486

原创 L2-1 RAG认知与项目实践

摘要 RAG(检索增强生成)技术通过结合检索外部知识和大语言模型生成能力,解决了大模型在时效性和专业知识覆盖方面的局限。其流程包括文档分块(按字符数、滑动窗口或句子切分)、向量化存储(使用嵌入模型将文本转为数值向量),最后通过检索增强提示词生成答案。FastGPT等工具简化了RAG应用开发。研究范式从Naive RAG演进至Advanced和Modular RAG,而本地部署工具如Ollama支持离线运行向量模型。该技术显著提升了模型在特定领域任务中的表现。

2025-05-28 08:48:25 844

原创 L1-2 提示工程特训和实战

这篇文章介绍了提示词工程的关键知识点和Prompt调优技巧。主要包含以下内容: 提示词基础概念:解释了提示词(Prompt)和提示词工程的定义,介绍了通用模型和专业化的Prompt 5层结构模型。 Prompt调优技巧: 零样本提示(Zero-Shot):不提供示例直接完成任务 少样本提示(Few-Shot):提供少量示例引导模型 链式思考(COT):通过"逐步思考"引导模型推理 自我一致性(Self-Consistency):生成多条推理路径选出最一致答案 每个技巧都配有实际案例和Py

2025-05-25 11:33:24 658

原创 L1-3 通俗易懂大模型的核心原理

ChatGPT背后的GPT模型基于Transformer架构,具备生成式、预训练和深度学习框架的特点。Transformer架构通过并行计算、自注意力机制等优势,能够高效处理长序列数据,广泛应用于自然语言处理任务。模型训练涉及监督学习、无监督学习、强化学习和自监督学习等多种方法,其中自监督学习通过数据自身的规律进行学习,减少对人工标注的依赖。Transformer的工作原理包括Token化、词向量处理、编码器与解码器的注意力机制,最终生成连贯的文本内容。

2025-05-11 16:44:30 847

原创 Python基础

【代码】Python基础。

2025-05-04 12:21:07 261

原创 L1-1 大语言模型的基础认知

AIGC的快速发展(如大语言模型)为AGI提供了部分技术积累(如自然语言处理能力),但AGI需突破认知、推理等更高层能力。通用人工智能,简称AGI(Artificial General Intelligence),指的是一种智能,能够理解、学习和应用知识和技能,需要能够处理极其广泛的问题和环境,具有很高的适应性、自主性和创造性。这是人类的终极目标,目前还没有达到!大模型特点:1.数据量大 2.规模大 3.算力大 4.参数量大 5.具备强大泛化能力的预训练模型(举一反三的能力)为什么是大模型兴起?

2025-04-27 08:08:52 507

原创 Optional

Optional 在Java 8中引入,目的是解决 NullPointerException 的问题。这是一个可以为 null 的容器

2024-12-24 16:13:04 775

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除