自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 收藏
  • 关注

原创 Python实现线性回归算法,只使用python中的pandas和numpy库

这一篇来介绍以下最简单的模型就是线性回归,这是很多机器学习的起步算法,虽然简单,但是通过Python最基础的数据结构去实现,只是用基础的库包去实现,有利于提高我们的编程能力,接下来让我们一起来编写代码。当然,你想要读懂以下内容,你需要学习过Python基础,并有认识机器学习的一些基础概念,如目标函数、标准化、过拟合、梯度下降、评价指标等。也许你也可以在阅读过程中一步一步去认识它们。线性回归就是用一条线来解释自变量与因变量之间的关系。目标函数最小二乘法和梯度下降法。

2024-07-16 15:41:33 1998

原创 Python实现逻辑回归算法,只使用python中的pandas和numpy库

只使用最基础的python语言,只是用基础的库包去实现机器学习算法,有助于读者理解各机器学习算法的原理,以及算法实现的整个步骤。这期带来逻辑回归(Logistic)算法的实现。希望通过基础的python代码去实现机器学习算法去提高我们的编程能力希望通过代码的一步步的实现,来领会整个算法实现过程。Logistic Regression 虽然被称为回归,但其实际上是分类模型,并常用于二分类第一,逻辑回归与线性回归的区别。

2024-07-16 14:29:35 1410

原创 Python实现K-means聚类算法,只使用python中的pandas和numpy库

只使用最基础的python语言,只是用基础的库包去实现机器学习算法,有助于读者理解各机器学习算法的原理,以及算法实现的整个步骤。这期带来K-means聚类算法的实现。k-means是一种最流行的聚类算法,属于无监督学习 ,可以在数据集分为相似的组(簇),使得组内数据相似度较高,组间之间的相似度较低。从样本中选择k个点作为初始簇中心。计算每一个样本到各个簇中心的距离,将样本划分到距离最近的簇中心所对应的簇中根据每个簇中的所有样本,重新计算簇中心,并更新。

2024-07-14 23:05:10 534

原创 Python实现KNN算法,只使用python中的pandas和numpy库

其核心思想是如果一个样本在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别。K最近邻算法(K-Nearest Neighbor,简称KNN)是一种用于。第二,KNN是一个惰性算法。意思是在训练函数中不进行训练。来度量样本之间的相似度。本文只使用欧几里得距离。predict预测函数是还没考虑权重的。predict2预测函数是考虑权重。同理,predict2是考虑权重的。第一,KNN算法中,通常使用。

2024-05-11 14:28:33 509 1

原创 Android开发记录1-1

dp(density-independent pixels):这是一种与设备密度无关的单位,它会自动根据屏幕的像素密度进行缩放。使用dp作为单位可以确保布局在不同设备上保持一致的物理大小。总结来说,使用dp单位可以确保在不同设备上保持一致的布局大小,而使用sp单位可以确保文本大小适应用户的字体偏好设置。在设计界面时,通常建议使用dp作为布局的尺寸单位,而在文本大小方面,特别是对于可调整大小的文本,建议使用sp作为单位。当用户调整设备的字体大小时,使用sp作为单位的文本也会相应地进行缩放,以适应用户的偏好。

2023-10-18 00:15:43 104 1

原创 Python推荐系统算法实现---------基于用户协同过滤算法(不包含构建模型)---第二版

本次实验类同于Python推荐系统算法实现---------基于用户协同过滤算法(不包含构建模型),不同于本次时间复杂度更低,并且内容更加细致。故加更。

2023-05-03 17:38:10 406

原创 机器学习之用逻辑回归制作评分卡(分类分析:基于UCI的german信用评分卡设计)

本次实验希望通过利用来自UCI数据集中的german.data进行数据处理和特征选择。之后通过逻辑回归进行模型构建与评估,然后构建评分卡模型,分数转化生成评分卡,最后制作符合业务要求且兼顾用户体验的评分卡。提示:工具选择:JupyterLab notebook。

2023-05-03 16:05:07 2664 4

原创 Python推荐系统算法实现---------基于用户协同过滤算法(不包含构建模型)

评分系统是一种常见的推荐系统。可以使用PYTHON等语言基于协同过滤算法来构建一个电影评分预测模型。学习协同过滤算法、UBCF和IBCF。具体理论读者可参考以下文章。如,基于用户的协同过滤推荐算法原理-附python代码实现;协同过滤算法概述与python 实现协同过滤算法基于内容(usr-item,item-item);推荐系统实践–基于用户的协同过滤算法;利用python构建一个简单的推荐系统。接下来将通过笔者利用Python实现的基于用户协同算法推荐系统。

2023-04-17 15:21:19 518

原创 【无标题】RFM客户聚类---------Python实现K-mean聚类,以及与EM聚类进行对比

本次主要是通过对原始的客户购买记录数据进行数据清洗与数据预处理,提取数据构建RFM模型,然后对客户进行聚类,最后模型应用,将客户分成不同的客户群。实现目标有三:1.借助客户数据,对客户进行分类2.对不同的客户类别进行特征分析,比较不同类客户的客户价值3.对不同价值的客户类别提供个性化服务,制定相应的销售策略原始数据读者可通过点击该此处来获取。

2023-04-16 00:21:29 1136 2

原创 Python推荐系统算法实现---------基于用户协同过滤算法

评分系统是一种常见的推荐系统。可以使用PYTHON等语言基于协同过滤算法来构建一个电影评分预测模型。学习协同过滤算法、UBCF和IBCF。具体理论读者可参考以下文章。如,基于用户的协同过滤推荐算法原理-附python代码实现;协同过滤算法概述与python 实现协同过滤算法基于内容(usr-item,item-item);推荐系统实践–基于用户的协同过滤算法;利用python构建一个简单的推荐系统。接下来将通过笔者利用Python实现的基于用户协同算法推荐系统。

2023-04-11 00:29:29 3684 4

原创 利用Python实现爬虫,包括pandas库的read_html()方法、requests库和Scrapy库

# 利用Python实现爬虫,包括pandas库的read_html()方法、requests库和Scrapy库

2023-04-01 00:16:41 2636

原创 利用Python进行调查问卷的信度检验和效度检验,并对量表进行因子分析

Python语言实现问卷量表的信度检验,效度检验以及因子分析

2023-03-11 22:02:12 11815 2

Python编写实现KNN算法,只使用python中的pandas和numpy库

适合机器学习初学者想要去了解机器学习算法的原理以及内部代码是如何去实现这个算法过程的,能够提高自己的Python编程能力。

2024-07-16

Python实现线性回归算法,只使用python中的pandas和numpy库

适合机器学习初学者想要去了解机器学习算法的原理以及内部代码是如何去实现这个算法过程的,能够提高自己的Python编程能力。

2024-07-16

Python实现逻辑回归算法,只使用python中的pandas和numpy库

适合机器学习初学者想要去了解机器学习算法的原理以及内部代码是如何去实现这个算法过程的,能够提高自己的Python编程能力。

2024-07-16

Python实现k-means聚类算法

适合机器学习初学者想要去了解机器学习算法的原理以及内部代码是如何去实现这个算法过程的,能够提高自己的Python编程能力。

2024-07-16

Python实现基础的人工神经网络

适合机器学习初学者想要去了解机器学习算法的原理以及内部代码是如何去实现这个算法过程的,能够提高自己的Python编程能力。

2024-07-16

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除