该代码是根据莫烦PYTHON网站学习的,发布仅仅是为了做笔记,详细内容请看莫烦PYTHON,网址为CNN 卷积神经网络 | 莫烦Python (mofanpy.com)
网址为学习CNN的视频,可以根据需要选择学习的板块
import numpy as np
from keras.utils import np_utils
np.random.seed(1337)
from keras.models import Sequential#一层一层来建立神经层
from keras.layers import Dense,Activation #全连接层和激活函数
import matplotlib.pyplot as plt#可视化模块
from keras.datasets import mnist #下载自带的数据集照片
from keras.optimizers import RMSprop #优化器采用RMSprop
#data
(X_train,y_train),(X_test,y_test) = mnist.load_data()
#data pre-processing
X_train = X_train.reshape(X_train.shape[0],-1)/255. #normalize
X_test = X_test.reshape(X_test.shape[0],-1)/255.
y_train = np_utils.to_categorical(y_train,num_classes=10)
y_test = np_utils.to_categorical(y_test,num_classes=10)
print(X_train[1].shape)
print(y_train[:3])
#model
model = Sequential([
Dense(32,input_dim=784),
Activation('relu'),
Dense(10),
Activation('softmax'),#class
])
#optimizer
rmsprop = RMSprop(lr=0.001,rho=0.9,epsilon=1e-08,decay=0.0)
#lr学习率 rho衰减速率(平滑常数) eps防止分母上除0 decay学习擦书,正则化
#model compile
model.compile(optimizer=rmsprop,loss='categorical_crossentropy',
metrics=['accuracy'])#更新的时候计算当前的准确率
#training
print("\n-----------traing")
model.fit(X_train,y_train,epochs=2,batch_size=32)#总数据训练2次,批处理32个
loss,accuracy = model.evaluate(X_test,y_test)
#testing
print("\n-----------testing")
print('test loss:',loss)
print('test accuracy:', accuracy)