跟着莫烦PYTHON网站学习的搭建神经网络分类的代码案例

文章展示了如何基于Keras库构建一个简单的卷积神经网络(CNN)模型,用于MNIST手写数字识别。代码涵盖了数据预处理、模型定义、编译、训练及测试过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

该代码是根据莫烦PYTHON网站学习的,发布仅仅是为了做笔记,详细内容请看莫烦PYTHON,网址为CNN 卷积神经网络 | 莫烦Python (mofanpy.com)

网址为学习CNN的视频,可以根据需要选择学习的板块

import numpy as np
from keras.utils import np_utils
np.random.seed(1337)
from keras.models import Sequential#一层一层来建立神经层
from keras.layers import Dense,Activation #全连接层和激活函数
import matplotlib.pyplot as plt#可视化模块
from keras.datasets import mnist #下载自带的数据集照片
from keras.optimizers import RMSprop #优化器采用RMSprop

#data
(X_train,y_train),(X_test,y_test) = mnist.load_data()

#data pre-processing
X_train = X_train.reshape(X_train.shape[0],-1)/255. #normalize
X_test = X_test.reshape(X_test.shape[0],-1)/255.
y_train = np_utils.to_categorical(y_train,num_classes=10)
y_test = np_utils.to_categorical(y_test,num_classes=10)

print(X_train[1].shape)
print(y_train[:3])



#model
model = Sequential([
    Dense(32,input_dim=784),
    Activation('relu'),
    Dense(10),
    Activation('softmax'),#class
])

#optimizer
rmsprop = RMSprop(lr=0.001,rho=0.9,epsilon=1e-08,decay=0.0)
#lr学习率 rho衰减速率(平滑常数) eps防止分母上除0  decay学习擦书,正则化

#model compile
model.compile(optimizer=rmsprop,loss='categorical_crossentropy',
              metrics=['accuracy'])#更新的时候计算当前的准确率

#training
print("\n-----------traing")
model.fit(X_train,y_train,epochs=2,batch_size=32)#总数据训练2次,批处理32个
loss,accuracy = model.evaluate(X_test,y_test)

#testing
print("\n-----------testing")
print('test loss:',loss)
print('test accuracy:',  accuracy)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值