- 博客(26)
- 收藏
- 关注
原创 02 FastAPI入门手册
FastAPI 是一个用于构建 API 的现代、快速(高性能)的 web 框架,使用 Python 并基于标准的 Python 类型提示。
2025-05-04 14:33:15
1104
原创 21 大模型学习——LangSmith
LangSmith 是 LangChain 提供的 AI 应用开发监测平台,我们可以用它来观察调用链的运行情况。它提供了一系列功能,包括模型调优、数据集管理和结果分析,使用户能够快速迭代并改进其语言模型的性能。LangSmith 还支持与多种流行的深度学习框架集成,简化了模型开发的工作流程,适用于各种 NLP 任务,如文本生成、情感分析和问答系统等。使用 LangSmith,我们可以用它来观察调用链的运行情况,包括模型调优、提示词管理和结果分析。
2025-04-23 19:03:10
657
原创 20 大模型学习——LlamaIndex构建RAG
LlamaIndex 是一个用于 LLM 应用程序的数据框架,用于注入,结构化,并访问私有或特定领域数据。
2025-04-23 18:54:43
1098
原创 19 大模型学习——LangGraph4_Planning Agent计划代理
Planning Agent与典型的 ReAct(推理和行动)风格的代理进行了比较,在该代理中,您⼀次思考⼀步。先制定⼀个多步骤计划,然后逐项执⾏。完成⼀项特定任务后,您可以重新审视计划并根据需要进⾏修改。
2025-04-23 18:45:44
237
原创 18 大模型学习——LangGraph3(聊天机器人)
使用 LangGraph 构建一个聊天机器人,我们的聊天机器人将实现以下功能:1.通过搜索网络回答常见问题—集成工具2.在多次调用中保持对话状态—上下文记忆3.将复杂查询路由到人工审核—人工介入4.使用自定义状态来控制机器人的行为—修改或自定义状态5.回退并尝试其他的执行路径—执行回退(time travel)
2025-04-07 00:41:37
1381
原创 17 大模型学习——LangGraph2(流式处理、添加断点、ReAct代理)
在ReACT架构中,Agent通过不断地思考(Reasoning)、采取行动(Acting)和观察结果(Observing)来解决问题。断点建⽴在 LangGraph 检查点之上,检查点在每个节点执⾏后保存图的状态。检查点保存在线程中,这些线程保存图状态,并且可以在图执⾏完成后访问。这使得图执⾏可以在特定点暂停,等待⼈为批准,然后从最后⼀个检查点恢复执⾏。
2025-04-06 00:20:55
1001
原创 16 大模型学习——LangGraph1
LangGraph 是一个基于LangChain构建的扩展。LangGraph 是一个用于构建具有状态和多参与者应用程序的 LLM 库,它允许创建具有循环的图,这在大多数智能体架构中是必需的。LangGraph提供了对应用程序流程和状态的细粒度控制,这对于创建可靠的智能体至关重要,并且LangGraph 还内置了包括持久化对话,支持高级的人机交互和记忆功能。
2025-04-03 00:05:12
1270
原创 15 大模型学习——Dify平台的介绍与安装
Dify.AI · 生成式 AI 应用创新引擎Dify 是一款开源的大语言模型(LLM) 应用开发平台。它融合了后端即服务(Backend as Service)和 LLMOps 的理念,使开发者可以快速搭建生产级的生成式 AI 应用。即使你是非技术人员,也能参与到 AI 应用的定义和数据运营过程中。非技术人员:不懂编程、对大模型不太懂,也可以使用DIFY。
2025-04-02 22:04:30
1529
原创 14 大模型学习——低精度微调
上溢出:超出了数据类型所能表示的最大范围下溢出:结果小于数据类型所能表示的最小范围,导致精度丢失或结果不准确。量化需要安装bitsandbytes:pip install bitsandbytes==0.37.2 -i其他部分不需要修改,修改创建模型代码即可Step4 创建模型# 多卡情况,可以去掉device_map="auto",否则会将模型拆开load_in_8bit=True # 以8位精度加载模型,这可以进一步减少内存使用并可能加速计算,但可能会牺牲一些精度模型加载占用显存。
2025-04-02 21:53:17
966
原创 13 大模型学习——PEFT方式及高阶操作
参数高效微调方式:BitFit、Prompt Tuning、P-tuning、Prefix-Tuning、ia3
2025-04-02 21:47:47
1138
原创 12 大模型学习——LLaMA-Factory微调
Alpaca 格式由斯坦福大学的研究人员提出,主要用于单轮指令微调任务。针对不同任务,数据集的格式要求不同。应用场景:- 适用于单轮任务,如问答、文本生成、摘要、翻译等。- 结构简洁,任务导向清晰,适合低成本的指令微调。
2025-04-02 21:37:48
2200
原创 11 大模型学习——模型微调-LoRA
微调定制化功能和领域知识学习。Hugging Face 的 PEFT(Parameter-Efficient Fine-Tuning)库是一个用于高效微调预训练语言模型的工具包,目前支持Prefix Tuning、Prompt Tuning、PTuningV1、PTuningV2、Adapter、LoRA、AdaLoRA等微调方法。
2025-04-02 21:31:44
788
原创 05 大模型学习——HuggingFace组件
HuggingFace 是一个开源社区,提供了开源的 AI 研发框架、工具集、可在线加载的数据集仓库和预训练模型仓库,huggingFace 提出了一套可以依照的标准研发流程。HaggingFace 把 AI 项目的研发大致分为以下几个部分:针对标准流程的各个节点,HuggingFace 都提供了许多工具,能够帮助研发人员快速实施。Transformers 是一个用来构建 NLP 应用库:1、HuggingFace出品,当下最热、最常使用的自然语言处理工具包。
2025-04-02 19:03:28
1001
原创 04 大模型学习——RAG
RAG(Retrieval-Augmented Generation,检索增强生成) 是一种结合了信息检索技术与语言生成模型的人工智能技术。该技术通过从外部知识库中检索相关信息,并将其作为提示(Prompt)输入给大型语言模型(LLMs),以增强模型处理知识密集型任务的能力,如问答、文本摘要、内容生成等。RAG模型由Facebook AI Research(FAIR)团队于2020年首次提出,并迅速成为大模型应用中的热门方案。
2025-04-02 17:34:48
661
原创 03 大模型学习——Langchain
LangChain 是一个开源框架(一套在大模型能力上封装的工具框架),帮助开发者轻松构建应用程序,这些应用程序能够利用语言模型(特别是大型语言模型)来实现各种功能。LangChain 的核心理念是提供一个结构化的方法来连接不同的组件(如语言模型、数据源等),以便构建复杂的应用程序。langchain帮助我们灵活的调用大语言模型,把和大型语言模型的交互的流程抽象出来,变成一个一个的小模块,方便更好的进行调用。通过把这些小模块串联起来,实现更多更复杂的功能。
2025-04-02 17:27:16
927
原创 02 大模型学习——Ollama
Ollama 是一个开源的大型语言模型服务工具,它旨在简化在本地运行大型语言模型的过程,降低使用大型语言模型的门槛。让用户能轻松下载、运行和管理各种开源的大型语言模型,例如Llama3、Mistral、Qwen2 等。Ollama 支持的模型完全开源免费,任何人都可以自由使用、修改和分发,它的优势在于简单易用、模型丰富以及资源占用低。Ollama 兼容 Windows、Linux 和 MacOS 操作系统。使用 Ollama,您仅需一行命令即可启动模型。
2025-04-02 17:19:58
1001
原创 01大模型学习——词向量
词向量(词嵌入)是一种将词汇表中的词或短语,映射为固定长度向量的技术。将高维且稀疏的单词索引,转为低维且连续的向量。转换后的连续向量,可以表示出单词与单词之间的语义关系。词向量(Embeddings)将非结构化数据(单词、句子、整个文档)转化为实数向量。
2025-04-02 17:17:37
891
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人