看到很多人迷茫该怎么弄线程池和多线程这个玩意呢,其实这个东西说难也不难,只是同学们还没有用得多,用多了其实也容易使用的,看你们个人需求来使用
为什么必须用线程池?
-
资源浪费:频繁创建/销毁线程消耗 CPU 和内存
-
管理困难:无法统一控制并发量和任务队列
-
稳定性风险:无限制线程数可能导致 OOM
参数 | 说明 | 设置建议 |
---|---|---|
核心线程数 | 常驻线程数量 | 等于 CPU 核心数 |
最大线程数 | 线程池扩容上限 | IO密集型可设为 2*CPU 核心数 |
存活时间 | 非核心线程空闲销毁时间 | 根据任务间隔设置(如30s) |
工作队列 | 缓冲未执行任务 | 必须用有界队列(如ArrayBlockingQueue) |
拒绝策略 | 任务溢出处理方案 | CallerRunsPolicy 保证任务不丢失 |
二、任务拆分:榨干多核 CPU 性能
2.1 CPU 密集型:分而治之(Fork/Join)
适用场景:大规模数组计算、递归任务
2.2 IO 密集型:异步回调(CompletableFuture)
避免线程阻塞,提升吞吐量
三、锁优化:减少线程竞争
3.1 无锁编程(CAS)
3.2 读写锁分离
3.3 ThreadLocal 线程封闭
四、性能调优公式与工具
4.1 线程数计算公式
-
CPU 密集型:
线程数 = CPU 核心数 + 1
-
IO 密集型:
线程数 = CPU核心数 * (1 + 平均等待时间 / 平均计算时间)
示例:4核CPU,任务50%时间等待IO,则线程数 ≈ 4 * (1 + 1) = 8
4.2 诊断工具
-
jstack:查看线程状态及锁持有情况
-
VisualVM:图形化监控线程阻塞和CPU使用率
-
Arthas:实时诊断线上线程问题
五、避坑指南:多线程常见问题
5.1 死锁预防
-
加锁顺序:统一获取锁的顺序(如按对象hash排序)
-
超时释放:使用
tryLock
设置等待时间
5.2 上下文切换开销
-
避免过度细分任务:确保单个任务执行时间 > 线程切换时间
-
使用协程(Loom 项目):JDK19+ 虚拟线程大幅降低切换成本
六、实战场景案例
6.1 高并发 Web 服务
6.2 并行流加速集合处理
总结:多线程优化的核心在于 合理利用 CPU 资源 与 最小化竞争开销。建议结合性能监控工具持续调优,另外:欢迎各位公司大佬们在评论区留言交流实战经验!