Java数据结构详解:从基础到高级应用

一、数据结构概述

数据结构是计算机存储、组织数据的方式,直接影响程序性能。Java通过集合框架java.util)提供了高效实现:

二、线性数据结构详解
1. 数组(Array)

特点:连续内存、固定大小、随机访问O(1)

应用场景:高频随机访问(如图像处理像素矩阵)

2. 链表(LinkedList)

特点:非连续内存、动态扩容、插入删除O(1)

源码关键Node<E>类含itemnextprev指针
应用场景:LRU缓存、浏览器历史记录

3. 栈(Stack)

特点:LIFO(后进先出)

4. 队列(Queue)

类型

  • 普通队列:LinkedList

  • 优先队列:PriorityQueue(最小堆实现)

  • 双端队列:ArrayDeque

三、树形数据结构
1. 二叉树(Binary Tree)

遍历方式

  • 前序:根→左→右

  • 中序:左→根→右(二叉搜索树有序)

  • 后序:左→右→根

2. 红黑树(TreeMap/TreeSet)

特性:自平衡二叉搜索树,保证增删查O(log n)

应用场景:需要有序键值的场景(如排行榜)

四、哈希表(HashMap/HashSet)

原理:数组+链表/红黑树(JDK8优化)

重要方法

  • hash(key):高16位异或降低碰撞

  • resize():2倍扩容并重哈希

应用场景:缓存系统(Redis底层)、快速查找

五、图(Graph)

表示方式

  1. 邻接矩阵:二维数组

  2. 邻接表:数组+链表

应用场景:社交网络、路径规划(Dijkstra算法)

六、高级数据结构
数据结构实现类时间复杂度适用场景
跳表(SkipList)ConcurrentSkipListMapO(log n)高并发有序数据
并查集(Union-Find)自定义O(α(n))连通性问题(朋友圈分组)
Trie树自定义O(L)前缀匹配(自动补全)
七、实战:选择最佳数据结构
  1. 高频查询 → HashMap

  2. 有序数据 → TreeMap

  3. 线程安全 → ConcurrentHashMap

  4. 生产者消费者 → BlockingQueue

  5. 前缀搜索 → Trie

性能黄金法则
读多写少 → 红黑树(TreeMap)
写多读少 → 哈希表(HashMap)

小编建议掌握数据结构核心在于:

  1. 理解底层实现(如HashMap的桶结构)

  2. 分析时间复杂度(选择最优操作)

  3. 结合实际场景(如并发环境选线程安全类)

  4. 利用工具类Collections.synchronizedMap()包装同步)

通过合理选择数据结构,可提升程序性能10倍以上!建议结合源码调试(如HashMap.resize())加深理解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值