深度学习TensorRT安装,以及VS2019、CUDA、cuDNN匹配

准备在Windows10上安装TensorRT用于深度学习,查询得知首先要安装CUDA和cuDNN,但安装之前要先安装VS,因为安装CUDA工具包时会自动安装vs中的一些插件,如果顺序反了的话,后续要手动配置,非常麻烦。当然安装之前还需要考虑自己电脑的配置,以及各版本之间是否匹配,减少不必要的麻烦!

已经提前配置好pycharm和Anaconda,选用python = 3.9的版本

一、安装准备

1、查看电脑的GPU是否支持TensorRT
在这里插入图片描述查询得知本人显卡GeForce GT 1030的算力为6.1,TensorRT支持计算能力在5.0及以上的显卡,可以安装

参考:
(1)Nvidia的显示GeForce GT 1030的算力
(2)TensorRT详细入门指北,如果你还不了解TensorRT

2、查看显卡支持的CUDA版本

(1)win+R打开cmd,输入nvidia-smi,即可看到显卡支持的cuda版本是12.2
在这里插入图片描述
3、查看VS跟CUDA可以匹配的版本

这里选择Windows11+VS2019+CUDA11.8
参考:Windows11+VS2019+CUDA11.8配置过程

4、查看电脑中是否安装CUDA

(1)打开命令提示符窗口(Windows键+R,输入cmd,回车)
(2)输入 nvcc -V
(3)如果电脑已经安装了CUDA,则会显示CUDA版本信息,如"CUDA Version 10.1",如果没有安装,显示一下内容

在这里插入图片描述

二、VS2019安装(安装社区版的忽略此部分)

下载企业版离线包(因社区版无法安装)

(1)解压离线包后,打开文件找到vc_enterprise,以管理员身份运行

在这里插入图片描述

(2)根据自己的需要选择安装组件,正常选择上图2个功能就够了

在这里插入图片描述

(3)更改位置直接将字母C改成D,其他不要改,不要自己建文件夹

在这里插入图片描述(4)启动后点击以后再说

在这里插入图片描述
(5)选择"继续但无需代码"

在这里插入图片描述
(6)点击使用产品密匙解锁

在这里插入图片描述

在这里插入图片描述

(7)输入产品密钥

在这里插入图片描述
VS 2019安装完毕!

三、CUDA和cuDNN安装

参考:【Windows11】Cuda和Cudnn详细安装教程

四、TensorRT安装(C++部署)

1、下载

下载地址:https://developer.nvidia.com/nvidia-tensorrt-8x-download

2、先注册会员下载

3、下载window10版本

在这里插入图片描述

4、解压到任意文件夹

在这里插入图片描述

5、把bin文件路径添加到系统环境变量中

在这里插入图片描述

6、复制lib目录下的所有dll文件到cuda的bin下

将 TensorRT-8.5.2.2\include中头文件copy到D:\CUDA\set_up\cuda11.8.0\include
将TensorRT-8.5.2.2\lib中所有lib文件copy到D:\CUDA\set_up\cuda11.8.0\lib\x64
将TensorRT-8.5.2.2\lib中所有dll文件copy 到D:\CUDA\set_up\cuda11.8.0\bin
在这里插入图片描述

7、conda的虚拟环境 ,执行下面三个命令

pip install nvidia-pyindex
pip install graphsurgeon
pip install uff

在这里插入图片描述

8、用VS2019 打开 D:\TensorRT-8.5.2.2\samples\sampleOnnxMNIST\sample_onnx_mnist

在这里插入图片描述
(1)生成界面如下:

在这里插入图片描述
(2)点击sample_onnx_mnist的生成

在这里插入图片描述(3)显示以下界面表示成功

在这里插入图片描述
8、配置TensorRT

(1)VC++目录,包含目录(就是include文件夹),库目录,就是刚才的lib所在文件夹

在这里插入图片描述

(2)为了防止后面执行exe操作闪退,添加getchar()到main函数下

在这里插入图片描述

9、编译成功后,会在 D:\TensorRT-8.5.2.2\bin路径下生成文件sample_onnx_mnist

在这里插入图片描述
(1)双击sample_onnx_mnist,出现找不到zlibwapi.dll
在这里插入图片描述
(2)自行下载:

下载地址http://www.winimage.com/zLibDll/
在这里插入图片描述
(3)将下载的压缩包中的zlibwapi.dll和zlibwapi.lib放于CUDA的bin和lib文件夹下

再次运行,成功!

在这里插入图片描述

五、TensorRT安装(python部署)

1、创建虚拟环境

打开conda命令控制台

conda create -n tensorrt python=3.9  #创建conda虚拟环境
activate tensorrt  #激活conda虚拟环境

2、查看CUDA安装版本

在这里插入图片描述
3、打开TensorRT文件夹内的python子目录,根据python版本选择好对应的whl文件

在这里插入图片描述

4、进入tensorrt的虚拟环境,安装tensorRT

pip install D:\TensorRT-8.5.2.2\python\tensorrt-8.5.2.2-cp39-none-win_amd64.whl

在这里插入图片描述

5、安装pycuda

PyCUDA是一种Python编程语言的扩展库,可以让开发者使用NVIDIA的CUDA平台编写GPU计算程序。CUDA是一种用于NVIDIA GPU的并行计算平台,它允许开发者利用GPU的高度并行性和内存带宽,提高计算速度和性能。

在这里插入图片描述

6、测试

在这里插入图片描述
TensorRT安装成功!

<think>嗯,用户问的是在Ubuntu 24.04上安装CUDA 12、cuDNN 8.9和TensorRT 8.6的版本是否匹配。首先,我需要确认这三个组件的兼容性。CUDAcuDNNTensorRT之间的版本必须相互支持,否则可能会出现兼容性问题。 首先,CUDA 12.x通常对应特定版本cuDNNTensorRT。根据NVIDIA的官方文档,CUDA 12.1或12.2支持cuDNN 8.9.x。但用户提到的是CUDA 12,具体是12的哪个小版本呢?如果是CUDA 12.0,可能支持的cuDNN版本可能不同,需要进一步确认。不过通常CUDA 12的大版本下,cuDNN 8.9应该兼容。 然后是TensorRT 8.6。TensorRT版本需要与CUDAcuDNN匹配。例如,TensorRT 8.6可能要求CUDA 11.x或12.x,但需要查看具体的发布说明。比如,TensorRT 8.6可能支持CUDA 12.1或更高,但需要确认是否支持用户安装CUDA 12的具体版本。 接下来是Ubuntu 24.04的支持情况。Ubuntu 24.04是较新的系统,可能CUDA 12的官方支持列表中还没有包含它,但通常NVIDIA会较快地适配新版本。需要检查CUDA 12的文档是否明确支持24.04,或者是否有用户成功安装的案例。如果官方不支持,可能需要手动安装驱动或使用兼容模式。 另外,用户可能需要安装NVIDIA的驱动程序。CUDA 12需要至少某个版本的驱动,比如535或更高。需要确保Ubuntu 24.04的默认驱动版本满足要求,或者用户需要手动安装合适的驱动版本。 总结步骤应该是:先安装合适的NVIDIA驱动,然后安装CUDA 12,接着安装对应cuDNN 8.9,最后安装TensorRT 8.6,并确保每个步骤的版本兼容性。需要提醒用户参考官方文档获取准确的信息,因为版本之间的依赖可能会变化。 可能还需要注意软件包依赖问题,比如Ubuntu 24.04的库版本是否与CUDA等要求的库兼容。如果出现依赖错误,可能需要手动处理或寻找替代方案。</think>以下是Ubuntu 24.04安装CUDA 12、cuDNN 8.9和TensorRT 8.6的版本匹配说明: ### 一、版本兼容性结论 **可以匹配**,但需注意以下细节: 1. CUDA 12.x ➔ 支持cuDNN 8.9.x(需选择对应版本) 2. TensorRT 8.6 ➔ 需要CUDA 11.x/12.x和cuDNN 8.x 3. Ubuntu 24.04 ➔ 需验证CUDA官方支持状态 ### 二、具体安装步骤 #### 步骤1:安装NVIDIA驱动 ```bash sudo apt install nvidia-driver-535 # CUDA 12要求535+驱动 nvidia-smi # 验证驱动安装(应显示驱动版本≥535) ``` #### 步骤2:安装CUDA 12 ```bash wget https://developer.download.nvidia.com/compute/cuda/12.2.2/local_installers/cuda_12.2.2_535.104.05_linux.run sudo sh cuda_12.2.2_535.104.05_linux.run # 选择不安装驱动(已提前安装) ``` #### 步骤3:安装cuDNN 8.9.6 1. 从[NVIDIA开发者网站](https://developer.nvidia.com/cudnn)下载: - cuDNN v8.9.6 (for CUDA 12.x) 2. 手动安装: ```bash sudo dpkg -i libcudnn8_8.9.6.50-1+cuda12.2_amd64.deb sudo dpkg -i libcudnn8-dev_8.9.6.50-1+cuda12.2_amd64.deb ``` #### 步骤4:安装TensorRT 8.6 1. 下载对应deb包: - TensorRT 8.6.1.6 for Ubuntu 22.04/24.04 (CUDA 12.x) 2. 安装命令: ```bash sudo dpkg -i nv-tensorrt-local-repo-ubuntu2404-8.6.1.6-cuda-12.2_1.0-1_amd64.deb sudo apt update sudo apt install tensorrt ``` ### 三、验证安装 ```bash # 验证CUDA nvcc --version # 应显示CUDA 12.x # 验证cuDNN cat /usr/include/x86_64-linux-gnu/cudnn_version.h | grep CUDNN_MAJOR -A 2 # 验证TensorRT dpkg -l | grep TensorRT # 应显示8.6.x版本 ``` ### 四、注意事项 1. **Ubuntu 24.04适配**:目前官方文档未明确支持,实测安装可行但建议: - 优先使用Ubuntu 22.04(LTS) - 若遇依赖问题,尝试`sudo apt --fix-broken install` 2. **版本对应关系**: $$ \text{CUDA 12.2} \rightarrow \text{cuDNN 8.9.6} \rightarrow \text{TensorRT 8.6.1} $$ 3. 深度学习框架匹配建议: - PyTorch ≥2.3 / TensorFlow ≥2.13 可支持此组合 建议安装前访问[NVIDIA官方文档](https://docs.nvidia.com/deeplearning/cudnn/support-matrix/index.html)确认最新版本兼容性。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值