自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(45)
  • 收藏
  • 关注

原创 linux命令-whereis与which命令详解

whereis 和 which 都是 Linux 中用于定位命令的工具。whereis 是“全能档案员”,专门查找命令的二进制文件、手册页和源码;which 是“路径追踪器”,只回答一个问题。

2025-03-18 09:00:00 1065

原创 linux命令-cp与rsync命令详解

cp 是 Linux 中基础的本地文件复制工具,主要用于简单、一次性任务,如复制文件/目录、创建硬链接或软链接,支持递归复制和保留部分文件属性(如权限、时间戳),但无法高效处理增量更新或远程传输。而 rsync 是高级同步工具,专为高效数据传输设计,支持增量同步(仅传输变化部分)、本地与远程路径(如 SSH)、带宽控制、断点续传、文件排除规则及完整元数据保留(包括 ACL 和扩展属性)。rsync 在频繁更新、跨网络备份或大规模数据迁移中效率显著,而 cp 更适合快速完成无需复杂逻辑的本地复制任务。

2025-03-17 09:00:00 911

原创 linux命令-wget与curl命令详解

wget:专注于 批量下载 和 离线使用(如镜像网站)。 curl:专注于 协议交互 和 API 测试(支持更多协议和方法)

2025-03-16 21:59:16 1608

原创 linux命令-more与less命令详解

在Linux命令行环境下,less与more虽同为分页工具,但定位与能力存在显著差异。**more作为早期文本查看器,仅支持逐屏向下浏览和简单搜索,适合快速查看小型文件,但因其单向操作特性和全文件加载机制,存在无法回溯内容、内存占用过高的局限。less**则通过双向滚动(支持上下翻页/跳转)、正则表达式搜索、动态日志追踪(类似tail -f)等交互功能,配合流式加载技术(仅缓存可视内容),彻底解决了内存瓶颈,可安全处理TB级文件。此外,less集成终端高亮、鼠标滚轮支持等现代化特性,逐步取代more成为主流

2025-03-15 09:00:00 1364

原创 linux命令-tar、gzip、bzip2、xz、zip命令详解

tar 是归档工具,用于将多个文件/目录打包为单一文件(不压缩),常结合压缩命令(如 gzip、bzip2、xz)生成 .tar.gz、.tar.bz2、.tar.xz 等压缩包,保留文件权限;gzip 压缩速度快但压缩率低,bzip2 压缩率更高但速度较慢,xz 压缩率最高但耗时最长;zip 则是独立归档压缩工具,跨平台兼容性好(生成 .zip),支持加密和分卷压缩,但压缩率通常低于 xz/bzip2,适合多系统共享文件。

2025-03-14 09:00:00 1075

原创 linux命令-ps与top详解

ps 和 top 的核心区别在于数据时效性与使用场景:ps 提供静态快照,通过命令参数灵活抓取瞬间的进程状态(如 ps aux 显示所有进程),适合脚本调用或一次性分析;top 则是动态实时监控工具,持续刷新系统资源(CPU、内存)和进程状态,支持交互操作(如按 P 排序、k 终止进程),适用于实时性能观察与故障排查。简而言之,ps 是精准的“快照相机”,top 是实时“监控仪表盘”,两者互补覆盖进程管理的不同需求。

2025-03-13 09:00:00 1151

原创 linux命令-findmnt、lsblk、mount使用指南

findmnt、lsblk、mount命令使用指南

2025-03-12 09:00:00 1147

原创 linux命令-netstat与ss 命令详解

netstat 全称是:network statistics,是一个用于监控、排除网络连接故障、路由表的命令行工具,它提供关于网络统计和 socket 连接的详细信息。ss 全称 Socket Statistics,是一个用于探究 Linux 上的套接字和网络连接的强大实用程序,它被用来替代老版的 netstat ,提供更快、更详细的信息输出。netstat属于 net-tools 工具包,通过读取 /proc/net 下的文件(如 /proc/net/tcp)来获取信息。在连接数较多时性能较差。

2025-03-11 09:00:00 1868

原创 linux命令-lsof与fuser 命令详解

lsof是一个功能强大的实用程序,可用于基于Linux和unix的系统,字面意思是“打开文件列表“。其主要功能是检索由不同运行进程打开的各种类型文件的详细信息。这些文件可以是普通文件、目录、块文件、网络套接字、命名管道等。

2025-03-10 14:34:21 1225

原创 linux命令-iptables与firewalld 命令详解

iptables是一个在 Linux 中的管理防火墙规则的命令行工具,它作为 Linux 内核的 netfilter 框架的一部分运行,以控制传入和传出的网络流量。与firewalld相比iptables是基于规则的,每个规则必须独立定义,firewalld是基于区域的,规则适用于预定义或自定义区域。iptables适合高度精细和手动的配置,firewalld动态规则更简单且更加用户友好。iptables需要刷新或重新启动才能应用更改,firewalld支持不间断的即时更改。iptables。

2025-03-08 09:00:00 2585

原创 linux命令-chage与find 命令详解

chage 修改用户密码过期信息。chage 可以更改密码修改之间的天数和上次更改密码的日期。系统使用此信息来确定用户何时必须修改其密码。chage 也可以设置帐户的过期时间。find是linux下最棒的命令之一,其查询功能非常强大。以下将详细介绍find的大多数用法:工作方式:其沿着文件层次结构向下遍历,匹配符合条件的文件,并执行相应的操作。

2025-03-07 09:00:00 1150

原创 linux命令-ulimit 命令详解

ulimit 是一个计算机命令,用于shell启动进程所占用的资源,参数形式有-H设置硬资源限制;-S 设置软资源限制;-a 显示当前所有的资源限制等

2025-03-06 14:07:58 2111

原创 使用DiskGenius工具来实现物理机多硬盘虚拟化迁移

本文介绍使用DiskGenius工具来实现物理机迁移虚拟机,实现虚拟化。本次测试使用WIN7系统虚拟机进行模拟物理机多硬盘虚拟化迁移至另一台笔记本的vmware workstation上。

2025-03-03 15:18:40 1557

原创 spring boot 安全配置基线

SpringBoot是由Pivotal团队提供的基于Spring的全新框架。Spring Boot是一个用于快速构建基于Spring框架的Java应用程序的开源框架。它旨在简化Spring应用程序的开发过程,通过提供一种约定优于配置的方式,减少开发者对配置的需求,从而提高开发效率。SpringBoot并不是对Spring功能上的增强,而是提供了一种快速使用Spring的方式,简省了繁重的配置,并提供了各种启动器,使开发者能快速上手。

2025-02-27 09:00:00 1224

原创 chrome浏览器解决“您的浏览器受托管”“由贵单位管理”“由所属组织管理”问题

对于公司电脑来说,如果你们公司部署了策略,比如添加了一些重要的内网站点到书签里。那么不要试图取消,应该公私分明。对于家庭或个人电脑,第三方软件却将这个功能乱用,设置企业策略应用到了个人的电脑,导致浏览器显示:“浏览器有所属组织管理”。绝大多数情况下,这些策略是安全的,比如一个第三方软件是不需要使用企业策略的,但是有些第三方软件可能有特殊目的所以会添加企业策略。例如诸如LastPass这类密码管理器可能就会触发这类策略,导致用户在浏览器里看到由贵单位管理相关字样。

2025-02-26 15:21:11 6644 2

原创 centos 安全配置基线

CentOS 是一个广泛使用的操作系统,为了确保系统的安全性,需要遵循一系列的安全基线。

2025-01-17 15:02:55 1549

原创 ubuntu安全配置基线

Ubuntu安全基线是一系列系统最低安全要求的配置,旨在确保Ubuntu操作系统的安全性。

2025-01-16 16:43:42 1630

原创 windows 2012安全加固基线

Windows安全加固基线涉及多个方面,旨在提高系统的安全性,防止未经授权的访问和数据泄露。

2025-01-14 09:00:00 1171

原创 IIS安全配置基线

IIS(Internet Information Services)安全部署与安全配置基线是确保IIS服务器稳定运行、保护网站数据安全以及防范潜在安全风险的重要措施。以下是对IIS安全基线配置的详细扩展,涵盖了多个关键的安全实践

2025-01-13 11:21:45 864

原创 wireshark抓包工具新手使用教程

Wireshark是一款开源的网络协议分析工具,可用于捕获和分析网络数据包,帮助用户深入了解网络通信的情况,排查网络故障和安全问题。

2025-01-08 22:52:44 1551

原创 WebLogic安全基线

WebLogic是一个Java Enterprise Edition应用服务器,提供了强大的安全功能。本文介绍了WebLogic的安全基线规范

2025-01-07 15:17:55 1356

原创 Nacos版本升级,从版本1.3.0升级至2.4.1(修复多个版本漏洞)

Nacos版本过低,存在多个Nday漏洞,本文记录了Nacos从1.3.0到2.4.1的升级过程与需注意的踩坑要点。

2025-01-03 16:45:29 2403 1

原创 Apache MINA 反序列化漏洞CVE-2024-52046

攻击者通过向受信任的数据序列化过程中添加恶意数据,从而在序列化和反序列化过程中执行恶意代码的攻击漏洞。这种漏洞通常存在于使用序列化 (serialization) 机制存储和传输数据的程序中。

2025-01-02 15:51:52 861

原创 windows远程桌面无法连接,报错:“由于没有远程桌面授权服务器可以提供许可证,远程会话被中断。请跟服务器管理员联系”

windows远程桌面无法连接,报错:“由于没有远程桌面授权服务器可以提供许可证,远程会话被中断。请跟服务器管理员联系”

2024-12-31 09:00:00 4154 2

原创 windows remote desktop service 远程桌面RDS授权激活

本文以 windows Server 2016为例,系统默认远程桌面连接数是2个用户,如果多余两个用户进行远程桌面连接时,系统就会提示超过连接数,可以通过添加远程桌面授权解决。

2024-12-30 16:49:52 3571 1

原创 NPM组件包 Rspack部分版本内嵌恶意代码

Rspack是一个基于 Rust 编写的高性能 JavaScript 打包工具, 它提供对 webpack 生态良好的兼容性,能够无缝替换 webpack, 并提供闪电般的构建速度。

2024-12-27 08:30:00 257

原创 NPM组件包 vant部分版本内嵌挖矿代码

Vant 是一个轻量、可定制的移动端组件库,于 2017 年开源。目前 Vant 官方提供了 Vue 2 版本、Vue 3 版本和微信小程序版本,并由社区团队维护 React 版本和支付宝小程序版本。

2024-12-26 20:53:57 989

原创 MongoDB安全基线

MongoDB安全基线

2024-12-26 16:52:11 1177

原创 Jenkins安全部署规范及安全基线

Jenkins安全部署规范及安全基线

2024-12-24 16:42:51 1591

原创 Jenkins 任意文件读取(CVE-2024-23897)修复及复现

Jenkins是一个开源软件项目,是基于Java开发的一种持续集成工具,用于监控持续重复的工作,旨在提供一个开放易用的软件平台,使软件项目可以进行持续集成。

2024-12-24 14:57:39 1380

原创 Apache Struts < 6.4.0 路径穿越文件上传RCE漏洞【PoC已公开】

Apache Struts是美国阿帕奇(Apache)基金会的开源Web项目,是一套用于创建企业级Java Web应用的开源MVC框架。受影响的版本中,Apache Struts 中FileUploadInterceptor逻辑存在缺陷,由于上传参数绑定过程中存在OGNL解析,攻击者可利用OGNL表达式修改文件名实现参数绑定,控制文件上传参数导致路径遍历,从而上传恶意文件到服务器执行任意代码。

2024-12-17 15:19:30 994

原创 Redis安全部署规范与安全基线

Redis安全部署规范与安全基线

2024-12-17 10:47:16 276

原创 MySQL5.6部署规范及安全基线

MySQL5.6部署规范及安全基线

2024-12-16 17:17:34 1069

原创 Apache_httpd安全部署规范与安全基线

apache_httpd安装部署规范与安全基线

2024-12-10 15:07:24 463

原创 Tomcat安全部署规范与安全基线

tomcat安全部署规范与安全基线

2024-12-04 14:41:22 426

原创 Nginx中间件部署规范与安全基线

nginx中间件安全基线

2024-12-02 13:44:57 1175 1

原创 服务器windows server 2019 系统图解安装

1、下载windows server 2019 ISO镜像文件;2、下载对应服务器的raid阵列卡驱动和服务器的其他硬件驱动;3、使用系统启动盘制作工具将下载好的windows server 2019 ISO镜像文件刻录到光盘或U盘当中;

2023-03-06 20:54:28 19573 2

原创 jQuery 资源管理错误漏洞CVE-2021-21252附修复方案

jQuery是美国John Resig个人开发者的一套开源、跨浏览器的JavaScript库。该库简化了HTML与JavaScript之间的操作,并具有模块化、插件扩展等特点。jQuery 1.19.3版本之前存在资源管理错误漏洞,该漏洞源于jquery验证包含一个或多个正则表达式,这些正则表达式容易受到ReDoS(正则表达式拒绝服务)的攻击。1.在包含 jQuery和插件的页面上选择一个表单来验证并调用该validate方法。2.通过 requirejs 在你的模块中包含 jQuery 和插件。

2023-03-05 01:24:06 2354

原创 VMware vSphere Hypervisor (ESXi) 7.0U3g安装

按空格键(o)可进行dhcp或static选择,选择“set static IPV4 address and network conf iguration:”,设置静态IPV4地址和网络配置,配置完成后按“Enter”(1、选择U盘启动后会进入加载ESXi安装程序(正在加载ESXI安装程序,不需要进行操作,等待加载完成);5、配置完成后,按“ESC”退出网络配置,此时会询问你是否保存,按Y确认保存更改;4、选择安装位置,选择一个安装ESXi的磁盘,按回车“Continue”;

2023-02-24 02:37:44 14734 4

原创 VMware ESXi OpenSLP堆溢出漏洞,附本次勒索软件ESXiArgs恶意文件分析(CNVD-2021-12321对标CVE-2021-21974)

近日以VMware ESXi服务器为目标的大规模勒索软件攻击正在席卷全球,包括法国、芬兰、加拿大、美国、意大利等多个国家数千台服务器遭到入侵。攻击者利用了2021年2月公开的高危漏洞(CNVD-2021-12321,),可以向WMware ESXi软件目标服务器427端口发送恶意构造的数据包,从而触发其OpenSLP服务堆缓冲区溢出,并执行任意代码,借以部署新的 ESXiArgs 勒索软件。一、漏洞详情VMware vSphere是美国威睿公司推出一套服务器虚拟化解决方案,包括虚拟化、管理和界面层。

2023-02-14 16:06:27 4383

学生表现因素数据集,该数据集全面概述了影响学生考试成绩的各种因素 它包括学习习惯、出勤情况、家长参与以及其他影响学术成功方面的信息

数据量:6607 关于数据集 描述 该数据集全面概述了影响学生考试成绩的各种因素。它包括学习习惯、出勤情况、家长参与以及其他影响学术成功方面的信息。 列描述 属性 描述 学习时长 每周学习的小时数。 出勤 出席课程的百分比。 家长参与 家长参与学生教育的程度(低、中、高)。 资源访问 教育资源的可用性(低、中、高)。 课外活动 参加课外活动(是,否)。 睡眠小时数 每晚平均睡眠时间(小时)。 之前的成绩 之前考试的分数。 动机水平 学生的学习动机水平(低,中,高)。 互联网接入 互联网接入的可用性(是,否)。 辅导课程 每月参加辅导课程的次数。 家庭收入 家庭收入水平(低,中,高)。 教师质量 教师质量(低、中、高)。 学校类型 上学类型(公立,私立)。 同伴影响 同伴对学业成绩的影响(正面、中性、负面)。 体育活动 每周平均体育活动小时数。 学习障碍 学习障碍的存在(是,否)。 父母的教育水平 父母的最高教育水平(高中,大学,研究生)。 离家距离 从家到学校的距离(近、适中、远)。 性别 学生性别(男,女)。 考试成绩 期末考试成绩。

2025-06-11

特斯拉股价数据集,数据量为2010-6-29到2025-3-3

数据指标: 数据包括每日开盘价、最高价、最低价、收盘价和交易量。它是股票市场分析、时间序列预测和金融研究的理想选择。

2025-06-15

学生表现与行为数据集,这个数据集是来自一个私人学习提供商的5000条真实记录数据 数据集包括探索与学业表现相关的模式、相关性和见解所需的关键属性

列: Student_ID: 每个学生的唯一标识符。 名字: 学生的名字。 姓氏: 学生的姓氏。 电子邮件:联系电子邮件(可以匿名化)。 性别:男,女,其他。 年龄:学生的年龄。 部门:学生的部门(例如,计算机科学,工程,商业)。 出勤率 (%): 出勤率百分比 (0-100%). Midterm_Score: 期中考试成绩(满分100分)。 Final_Score: 最终考试成绩(满分100分)。 Assignments_Avg: 所有作业的平均分(满分100分)。 Quizzes_Avg: 平均测验分数(满分100分)。 参与评分:根据课堂参与情况的评分(0-10)。 项目评分: 项目评估得分(满分100分)。 总分:所有成绩的加权总和。 成绩:字母等级(A, B, C, D, F)。 每周学习小时数:每周平均学习小时数。 课外活动:学生是否参加课外活动(是/否)。 家庭互联网接入:学生是否在家有互联网接入?(是/否)。 父母教育水平:父母的最高教育水平(无,高中,学士,硕士,博士)。 部分省略 出勤情况不计入总分或权重非常小。 总分=(期中考试0.15)+(期末考试0.25)+(作业平均分0.15)+(测验平均分0.1)+(参与度0.05)+(项目得分0.3) 数据集包含: 缺失值(空值):在某些记录中(例如,出勤、作业或家长教育水平)。 某些数据中的偏见(例如:评分偏见,例如,出勤率高的学生会获得稍微更好的成绩)。 分布不均衡(例如,某些部门的学生更多)。 注意: 数据集是真实的,但作者故意加入了一些偏见,以增加挑战。 某些列已被掩码化,因为数据所有者要求如此。 "Students_Grading_Dataset_Biased.csv" 包含了有偏见的数据集 "Students Performance Dataset" 包含了掩码化数据集

2025-06-11

学生抑郁数据集,数据集编译了旨在理解,分析和预测学生抑郁水平的广泛信息 它是为心理学,数据科学和教育研究的研究而设计的,提供了对有助于学生心理健康挑战并有助于设计早期干预策略的因素的见解

概述 该数据集编译了旨在理解,分析和预测学生抑郁水平的广泛信息。它是为心理学,数据科学和教育研究的研究而设计的,提供了对有助于学生心理健康挑战并有助于设计早期干预策略的因素的见解。 数据描述 格式: CSV(每行代表个人学生) 特征: ID:每个学生的唯一标识符 人口统计:年龄,性别,城市 学术指标: CGPA,学术压力,学习满意度 生活方式与福祉:睡眠时间,饮食习惯,工作压力,工作满意度,工作/学习时间 其他因素:职业,学位,财务压力,精神疾病家族史以及学生是否有自杀念头 目标变量: 抑郁状态:二进制指标(0/1或是/否)表示学生是否正在经历抑郁症 关键亮点 多方面数据:整合人口,学术和生活方式因素,以提供对学生健康的全面视图。 道德考虑:数据收集遵守严格的道德标准,重点是隐私,知情同意和匿名化。 研究与实践应用:理想的理想选择预测模型,进行统计分析并为教育环境中的心理健康干预策略提供信息。 用法和潜在应用 学术研究:探索学术压力与心理健康趋势之间的相关性。 数据科学项目:建立预测模型,以根据各种指标识别高危学生。 政策制定:告知学术机构内有针对性的心理健康支持计划的制定。 道德考虑:由于数据的敏感性,请确保任何分析或已发表的结果尊重隐私和道德准则。该数据集的用户在解释和共享见解时应注意道德含义。

2025-06-11

AI开发者生产力数据集,通过跟踪行为、咖啡因、睡眠和人工智能使用情况来量化开发人员的生产力

数据集模拟了AI开发人员在500天内的生产力,捕捉了深度工作、干扰、咖啡摄入量和代码质量之间的微妙互动。为了测试机器学习的极限,这个数据融合了行为、生理和生产力指标,以允许高级预测建模、回归、聚类和时间序列分析。 数据指标: hours_coding 总共花费在软件开发工作上的专注时间(0-12小时)。 coffee_intake_mg 每日咖啡因摄入量(毫克,0-600毫克)。 distractions 干扰源的数量(例如,会议,Slack通知)(0-10)。 sleep_hours 前一晚的睡眠时间(3-10小时)。 commits 一天中推送的代码提交次数(0-20)。 bugs_reported 当天编写代码中报告的错误数量(0-10)。 ai_usage_hours 使用AI工具(例如,ChatGPT,Copilot)的时间(0-12)。 cognitive_load 自我报告的精神压力,用1到10的 scale 来表示。 task_success 目标列 — 每日生产力目标是否达成(0/1)。 建议的机器学习任务 二元分类 (task_success) 回归(例如,预测cognitive_load) 工作模式的聚类 相关性分析与特征重要性 时间序列模拟 & 移动平均值(适用于合成日期列) 探索性数据分析 (EDA) 灵感 咖啡因如何影响代码中的错误? 你能否根据干扰和AI工具的使用来预测一个开发人员今天是否能成功? 在AI使用和原始编码时间之间,最佳的平衡是什么? 这个数据集是使用Python和NumPy基于观察到的软件开发人员行为模式合成生成的。尽管是虚构的,但数据分布被设计成模拟合理的开发人员活动,融合了生产力指标和行为科学。

2025-06-10

糖尿病数据集,提供70000条各种类型糖尿病的广泛概述,包括类固醇引起的糖尿病、新生儿糖尿病(NDM)、糖尿病前期、1型糖尿病和沃弗尔综合症 包括许多对理解糖尿病影响因素重要的医学、遗传和生活方式属性

该数据集提供了与各种糖尿病形式相关的全面医疗数据集合,包括类固醇引起的糖尿病、新生儿糖尿病(NDM)、糖尿病前期、1型糖尿病和沃弗尔综合症。它包含多个特征,涵盖基因标记、环境因素、生活方式选择和其他相关的医疗评估。这个丰富的数据集旨在帮助研究人员、数据科学家和医疗专业人员分析和理解不同类型糖尿病相关的复杂相互作用和风险因素。 主要特点: Target:糖尿病类型或糖尿病前期。 Genetic Markers:糖尿病遗传易感性的指标。 Autoantibodies:常见于自身免疫性糖尿病的自身抗体的存在。 Family History:是否有关于糖尿病的已知家族史的信息。 Environmental Factors:可能对糖尿病有影响的环境因素的细节。 Insulin Levels:患者测量的胰岛素水平。 Age and BMI:包括年龄和身体质量指数的人口统计信息。 Physical Activity and Dietary Habits:可能影响糖尿病风险的生活方式因素。

2025-06-08

眼癌患者数据集,包含(5000名被诊断出患有各种类型眼癌(包括黑色素瘤、视网膜母细胞瘤和淋巴瘤)患者的详细医疗和人口信息)

该数据集提供了5000名被诊断出患有各种类型眼癌(包括黑色素瘤、视网膜母细胞瘤和淋巴瘤)患者的详细医疗和人口信息。它包括以下字段: 患者人口统计学:年龄(1-90),性别,国家 临床详情:癌症类型,部位(左侧/右侧/双侧),诊断时分期 诊断与治疗:诊断日期,治疗类型(手术、放疗、化疗),治疗强度(例如,放疗剂量Gy,化疗次数) 结果:生存时间(月),结果状态(缓解中,活跃,死亡) 遗传与历史:遗传标记(例如,BRAF突变),眼部癌症的家族史 该数据集旨在用于机器学习项目、统计建模和医疗研究。它适用于分类(例如,预测结果)、回归(例如,生存分析)、聚类和探索性数据分析等任务。 潜在用途: 生存预测模型 基于治疗类型的结局分析 基因标记与癌症类型之间的相关性分析 地理人口统计学趋势与眼癌发病率

2025-06-07

基于计算机视觉的猫品种分类数据集,包含超过60种以上的猫品种,超过11,000张高质量的图片

准备好深入研究可爱的猫咪分类了吗?这个数据集揭示了超过11,000张高质量的图片,涵盖了60多种不同的猫品种。从波斯猫到优雅的暹罗猫,从蓬松的缅因州猫到好奇的无毛猫,你将发现我们这些完美的毛茸茸伙伴的惊艳视觉百科全书 品种: 暹罗猫 波斯猫 缅因猫 布偶猫 无毛猫(斯芬克斯猫) 英国短毛猫 阿比西尼亚猫 苏格兰折耳猫 德文卷毛猫 美国短毛猫 东方短毛猫 缅甸猫 异国短毛猫(加菲猫) 挪威森林猫 西伯利亚猫 土耳其安哥拉猫 孟加拉豹猫 缅甸圣猫(伯曼猫) 康沃尔卷毛猫 埃及猫(埃及毛) 日本短尾猫 科拉特猫 拉波姆猫 曼岛猫(无尾猫) 奥西猫 俄罗斯蓝猫 萨凡纳猫 赛尔凯克卷毛猫 新加坡猫 索马里猫 东奇尼猫 土耳其凡湖猫 美国短尾猫 美国卷耳猫 美国刚毛猫 巴厘猫 孟买猫 夏特尔猫 金吉拉长毛猫(辛布里克猫) 欧洲短毛猫 哈瓦那棕猫 喜马拉雅猫 考马尼猫 韩国短尾猫 狼人猫(莱科伊猫) 矮脚猫(曼基康猫) 内布鲁猫 彼得秃猫 精灵猫(皮克西猫) 布偶亲缘猫(拉格多芬猫) 塞伦盖蒂猫 泰国猫 玩具虎猫(托伊格猫) 乌克兰勒夫科伊猫 雪橇猫(乔西猫) 塞浦路斯猫 顿斯科伊猫 德国卷毛猫 卡累利阿短尾猫 库里连短尾猫 湄公河短尾猫 俄勒冈卷毛猫 狩猎猫(Safari猫) 索科克猫 乌拉尔卷毛猫 凡卡迪斯猫(Vankedisi,凡湖猫别名)

2025-05-14

全球国际教育费用数据集,汇编了追求海外高等教育学生的详细财务信息,涵盖了全球多个国家、城市和大学,捕捉了全额学费和生活费用的范围以及主要的辅助费用,为你提供了一个全面的数据驱动洞察基础

关于数据集 这个国际教育成本数据集汇编了追求海外高等教育学生的详细财务信息。它涵盖了全球多个国家、城市和大学,捕捉了全额学费和生活费用的范围以及主要的辅助费用。通过标准化字段,如以美元计的学费、生活成本指数、租金、签证费、保险和最新的汇率,它能够跨项目、学位水平和地理区域进行比较分析。无论你是正在规划预算的潜在国际学生,还是提供咨询服务的教育顾问,或者是研究全球教育经济学的研究人员,这个数据集都为你提供了一个全面的数据驱动洞察基础。 潜在用途 预算规划 未来学生可以根据国家、项目级别或大学筛选,以预测总费用并比较不同目的地。 政策分析 教育政策制定者和非政府组织可以评估国际教育的可负担性并设计支持项目。 经济研究 经济学家可以将生活成本指数和学费水平与入学率或学生人口统计学联系起来。 大学基准测试 机构可以将其费用和杂费与全球同行大学进行比较。 数据收集与质量说明 货币转换 所有货币价值都使用当时的汇率统一为美元,以便直接比较。 生活成本指数 由知名城市指数出版物(例如,Numbeo, Mercer)衍生而来,用于标准化不同的生活成本指标。 数据货币 汇率和费用表应定期更新,以反映市场波动和政策变化。 随意探索、可视化和扩展此数据集,以更深入地了解出国留学的真实成本!

2025-05-30

谷歌股票价格(2004-至今)数据集,包含提供完整的每日股票价格,从谷歌在2004年的IPO到现在的数据,它提供了股票表现随时间变化的清晰和一致的视图,构建预测模型、测试交易策略,可视化长期价格变动

关于数据集 谷歌 日股票价 (2004–2025) 概述 该数据集提供完整的历每日股票价格,涵盖Alphabet Inc. (GOOGL)。从GOOGL在2004年的IPO到现在的数据,它提供了股票表现随时间变化的清晰和一致的视图。 无论您是在构建预测模型、测试交易策略,还是可视化长期价格变动,这个数据集只需几行代码即可使用。 Columns 1. open – Opening stock price of the day 2. high – Highest price reached that day 3. low – Lowest price during the day 4. close – Closing price of the trading day 5. volume – Volume of shares traded date (index) – Trading date

2025-05-30

香烟和酒精成瘾数据集,包含3000名吸烟和饮酒成瘾的个体的合成但真实的样本数据 它包括人口统计信息、行为健康统计数据、生活方式指标和成瘾模式 该数据对机器学习模型、数据分析、公共卫生研究和教育目的有用

关于数据集 该数据集包含3000名吸烟和饮酒成瘾的个体的合成但真实的样本数据。它包括人口统计信息、行为健康统计数据、生活方式指标和成瘾模式。该数据对机器学习模型、数据分析、公共卫生研究和教育目的有用。

2025-05-30

外向型与内向型行为数据数据集,包含2900条记录,有8个与社交行为和人格特质相关的特征,旨在探索并分类个体为外向型或内向型,是心理学家、数据科学家和研究社会行为、性格预测或数据预处理技术的研究人员资源

关于数据集 概述 深入探索外向型与内向型性格特征数据集,这是一个丰富的行为和社会数据集合,旨在探索人类性格的多样性。该数据集捕捉了外向型和内向型的关键指标,是心理学家、数据科学家和研究社会行为、性格预测或数据预处理技术的研究人员的宝贵资源。 上下文 性格特质如外向和内向塑造了个体与社交环境互动的方式。这个数据集提供了关于独处时间、社交活动出席和社交媒体参与等行为的见解,使其在心理学、社会学、市场营销和机器学习中得到应用。无论您是预测性格类型还是分析社会模式,这个数据集都是您发现有趣见解的门户。 数据集详情 尺寸:数据集包含2,900行和8列。 功能: -Time_spent_Alone:每天独处的时间(0-11)。 -Stage_fear:怯场(是/否)。 -Social_event_attendance:社交活动的频率(0-10)。 -Going_outside:外出频率(0-7)。 -drained_after_socialization:社交后感觉筋疲力尽(是/否)。 -Friends_circle_size:好友数量(0-15)。 -Post_frequency:社交媒体发布频率(0-10)。 -Personality::目标变量(外向/内向) 数据质量:包含一些缺失值,非常适合用于练习插补和预处理。 格式:单个CSV文件,兼容Python、R和其他工具。 数据质量笔记 包含在Time_spent_Alone和Going_outside等列中的缺失值,为数据清理练习提供了机会。 平衡类确保模型训练的健壮性。 二元分类变量简化了编码任务。 潜在用例 建立机器学习模型以预测人格类型。 分析社会行为与人格特质之间的相关性。 探索社交媒体参与模式。 练习数据预处理技术,如插补和编码。 创建可视化以发现行为趋势。

2025-05-30

学生社交媒体与人际关系数据集,包含学生社交媒体行为和相关生活结果匿名记录 涵盖多个国家和学术水平,重点关注关键维度,例如使用强度,平台偏好和关系动态 每行代表一个学生的调查响应,适合统计分析和机器学习

关于数据集 概述 这学生社交媒体与人际关系数据集包含学生社交媒体行为和相关生活结果的匿名记录。它涵盖了多个国家和学术水平,重点关注关键维度,例如使用强度,平台偏好和关系动态。每行代表一个学生的调查响应,提供了适合统计分析和机器学习应用的横截面快照。 范围和覆盖范围 人口:16-25岁的学生参加了高中,本科或研究生课程。 地理:多国覆盖范围(例如,孟加拉国,印度,美国,英国,加拿大,澳大利亚,德国,巴西,日本,韩国)。 大体时间:通过第1季度2025年管理的一次性在线调查收集的数据。 体积:根据研究需求,可配置的样本量(例如100、500、1,000条记录)。 数据收集和方法论 调查设计:根据社交媒体成瘾(例如卑尔根社交媒体成瘾量表)和关系冲突指数的验证量表所改编的问题。 招募:参与者通过大学邮寄清单和社交媒体平台招募,以确保学术水平和国家的多样性。 数据质量控制: 验证:强制性字段和范围检查(例如,使用时间为0-24)。 解复该删除:通过唯一的Student_ID检查删除重复条目。 匿名化:没有收集的个人身份信息。 潜在分析 相关研究:检查每日使用时间与心理健康评分或睡眠时间之间的关联。 预测建模:构建分类器以根据使用模式和平台类型来预测关系冲突。 聚类:识别用户段(例如,“高使用高压”与“中等用途平衡”)。 局限性 自我报告偏见:所有措施都是自我报告的,可能会受到社会可持续性的影响。 横截面设计:一次性调查可以防止因果推断。 抽样变异:通过在线渠道招聘的招募可能会不足的互联网访问范围有限。

2025-05-30

基于机器学习的空气质量数据集,含CO,NMHC,NOX,NO₂,O₃等关键气体的时间戳读数以及支持气象因素,例如温度(T),相对湿度(RH)和绝对湿度(AH),适用于分类(源识别)和回归(污染物预测)

该数据集包含从沙特阿拉伯城市地点收集的空气质量测量,重点是污染物和气象参数。它专为基于机器学习的来源分类(例如,交通,工业,生物量)和污染物水平的预测而设计。该数据集的灵感来自UCI空气质量数据集,但使用用于监督分类任务的源标签扩展。 该数据集包括CO,NMHC,NOX,NO₂,O₃等关键气体的时间戳读数以及支持气象因素,例如温度(T),相对湿度(RH)和绝对湿度(AH)。 关键功能 时间戳记录:包括时间序列分析的日期和时间字段。 污染物浓度: CO(GT):一氧化碳 NMHC(GT):非甲烷烃 C6H6(GT):苯 NOX(GT)和NO2(GT):氮氧化物 传感器输出:PT08.S1 – S5表示传感器对气体的响应。 气象数据: T:环境温度 RH:相对湿度 AH:绝对湿度 目标列: 资料来源:手动标记为用于分类任务的流量,工业或生物量。 建模支持:适用于分类(源识别)和回归(污染物预测)。

2025-05-15

基于计算机视觉的花分类数据集,由8189个高质量图像组成,含102种不同的花样,4102张训练集图像,2045张验证集图像,2042张测试集图像,所有图像都调整到224x224像素,这是深度学习模型的

花分类数据集由8189个高质量图像组成,代表102种不同的花样。这些图像经过精心策划,以确保各种各样的全面收藏,为培训深度学习模型提供了坚实的基础。 数据集分为三个部分: 培训集:4102张图像(占数据集的50%)用于训练模型。 验证集:2045张图像(占数据集的25%)用于验证模型性能并防止过度拟合。 测试集:2042张图像(占数据集总数的25%)保留用于最终评估受过训练的模型的泛化功能。 为了保持所有图像的一致性,已经应用了预处理步骤: 自动取向:确保图像适当地定向,无论其捕获方式如何。 调整大小:所有图像都调整到224x224像素,这是深度学习模型的标准输入大小。这种调整有助于保持跨图像的统一性,同时保留重要的视觉特征进行分类。

2025-05-15

人工智能对数字媒体的影响数据集(2020-2025),数据集探讨了AI生成内容对包括新闻、社交媒体、娱乐和营销在内的各个行业的影响 非常适合于AI采用分析、行业预测和伦理AI研究

这个数据集探讨了AI生成内容对包括新闻、社交媒体、娱乐和营销在内的各个行业的影响。它提供了公众态度、参与趋势、经济影响和监管回应随时间变化的见解。 随着AI生成内容的日益普及,这个数据集成为数据分析师、商业战略家和机器学习研究人员研究趋势、检测偏见和预测未来AI采用模式的宝贵资源。 这个数据集非常适合于AI采用分析、行业预测和伦理AI研究!

2025-05-14

2024-2025年银行客户信用风险评估数据集,用于银行信用风险评估,重点是评估客户的信用状况

信用风险 是由于借款人未能偿还贷款而造成的财务损失的可能性。本质上,信用风险是指贷款人可能无法收到应得的本金和利息,从而导致现金流中断和催收成本增加的风险。 数据集特征 债务 (Задолженность):客户所欠的总未付金额。 逾期天数 (Просрочка, дни):付款逾期的天数。 初始信用额度 (Первоначальный лимит):分配给客户的初始信用额度。 出生日期 (BIRTHDATE):客户的出生日期。 性别 (SEX):客户的性别(例如,男性,女性)。 教育 (EDU):客户的教育水平(例如,高中,大学)。 收入 (INCOME):客户的月收入或年收入。 贷款期限(TERM):贷款或信贷协议的持续时间(以月为单位)。 信用历史评分 (信用历史评分):反映客户信用历史的分数或评级。 居住区 (LV_AREA):客户居住的地理区域或地区。 定居点名称 (LV_SETTLEMENTNAME):客户所居住的城市、城镇或定居点的名称。 行业名称 (INDUSTRYNAME):客户所从事的行业或领域。 违约概率 (PDN):客户违约的估计可能性。 客户端 ID (CLIENTID):分配给客户端的唯一标识符。 评分标记 (SCORINGMARK):分配给客户的信用评分或风险评估标记。 未成年儿童数量 (UNDERAGECHILDRENCOUNT):客户拥有的未成年儿童数量。 Velcom评分 (VELCOMSCORING):一种特定的评分指标(可能与电信相关)用于风险评估。 家庭状况 (FAMILYSTATUS):客户的婚姻或家庭状况(例如,单身、已婚、离婚)。

2025-05-14

基于计算机视觉的热门运动鞋分类数据集,高质量、干净的运动鞋图像集合,可以帮助你训练计算机视觉模型

受欢迎和现代运动鞋图像分类数据集——一个高质量、干净的运动鞋图像集合,帮助你训练计算机视觉模型! 无论你是时尚科技爱好者、机器学习爱好者,还是对街头服饰和运动鞋文化充满热情,这个数据集都为你提供了构建强大的运动鞋分类模型所需的一切。 关于类和图像的信息在文件中提供 目录: 耐克空军 1 低帮 耐克空军 1 中帮 耐克空军 1 高帮 耐克 Air Max 1 耐克 Air Max 90 耐克 Air Max 95 耐克 Air Max 97 耐克 Air Max Plus (Tn) 耐克 Air Max 270 耐克气垫Vapormax Plus 耐克 Air Vapormax 飞织鞋 耐克 Dunk Low 耐克高帮篮球鞋 耐克 Blazer Mid '77 耐克科尔特兹 耐克乔丹1号高帮鞋 耐克乔丹1代低帮鞋 耐克乔丹3代 耐克 艾弗森 4 耐克 Air Jordan 11 阿迪达斯斯坦史密斯 阿迪达斯超级明星 阿迪达斯桑巴 阿迪达斯 Gazelle 阿迪达斯 Forum 低帮 阿迪达斯 Forum 高帮 阿迪达斯超 boost 阿迪达斯 NMD R1 Yeezy Boost 350 V2 Yeezy 700 波浪跑鞋 椰子拖鞋 匡威查克·泰勒全明星高帮 匡威查克·泰勒全明星低帮鞋 匡威 钦奇 70 高帮 匡威 阿甘鞋 低帮 匡威 One Star 范斯老式滑板鞋 范斯 Sk8-Hi 范斯经典款 Vans 便鞋 格子 新百伦 574 新百伦 990 新百伦 992 新百伦 327 新百伦 550 彪马麂皮经典款 锐步经典皮革 锐步俱乐部 C 85 亚瑟士 Gel-Lyte III 萨洛蒙 XT-6

2025-05-14

亚马逊2025销售数据集,数据集包含250条亚马逊销售交易记录,包括所售商品、客户、支付方式和订单状态的详细信息

亚马逊销售数据集描述 该数据集包含250条亚马逊销售交易记录,包括所售商品、客户、支付方式和订单状态的详细信息。 列描述: 订单编号 - 每个订单的唯一标识符(例如,ORD0001)。 日期 - 订单日期。 产品 - 购买的产品名称。 类别 - 产品类别(电子产品、服装、家用电器等)。 价格 - 产品的单价。 数量 - 订单中购买的单位数量。 总销售额 - 订单的总收入(价格×数量)。 客户姓名 - 客户的名字。 客户所在地 - 客户所在的城市。 支付方式 - 支付方式(信用卡、借记卡、PayPal等)。 状态 - 订单状态(已完成、待处理或已取消)。 这个数据集可以用于销售分析、客户行为洞察和收入趋势可视化。

2025-05-14

基于物联网的智能温室数据集(农业生长监测),温室植物生长数据集

该物联网农业数据集记录了在提克里特大学农业实验室的两个温室环境中(物联网控制 vs. 传统)种植的植物的详细生理和形态测量数据。该数据集由穆罕默德·伊斯梅尔·利法 (2023–2024) 在Wisam Dawood Abdullah教授的监督下汇编,包含30,000条记录,涉及14个变量,这些变量量化了叶绿素水平、生长速率、生物量(湿重/干重)、根系指标等,并且有一个最终的分类类别标签

2025-05-14

腾讯TCEHY每日股价数据集(2010-2025年)

数据量:2010-1-5 —2025-7-23 (交易日数据) 数据集概述 该数据集提供了腾讯公司(TCEHY)从2010-1-5 到2025-7-23的历史股票价格变动的全面记录。作为一家领先的科技巨头,腾讯的股票受到投资者、分析师和研究人员的广泛跟踪。该数据涵盖了每日交易活动,可用于财务分析、机器学习项目和教育目的,对于进行金融分析、交易策略开发或时间序列建模的任何人来说都非常有用。 数据介绍: 日期: 交易日期 (YYYY-MM-DD) 开盘: 开盘价 最高: 交易日内达到的最高价格 最低: 交易日最低价 收盘: 收盘价 Adj Close: 调整收盘价(考虑了股息和股票拆分) 交易量: 某一天的总交易量 该数据集的价值在于: 时间序列分析: 分析股票价格随时间变化的趋势和模式。 预测: 使用统计或机器学习技术建立预测模型,以预测未来的股票价格。 技术分析:应用传统的金融指标和策略(例如,移动平均线、RSI、MACD)来研究价格走势。 事件影响研究:研究外部事件(收益发布、产品发布、宏观经济新闻)对股价的影响。 投资组合模拟: 使用历史数据对交易策略进行回测或模拟投资组合。 教育目的: 教授或学习有关金融市场、数据处理和数据可视化。 示例分析 可视化几十年来的股价增长。 比较在重大市场事件(崩盘、繁荣等)中的股票表现。 分析财报或产品发布对价格走势的影响。 将交易量与价格波动相关联。

2025-07-29

DevExpress24.2.5全套

DevExpress24.2.5全套

2025-07-29

亚马逊销售数据集,该数据集包含1千多个亚马逊产品的评分和评论数据,这些数据根据亚马逊官方网站上的详细信息列出

数据量:1351 功能 product_id - 产品ID 产品名称 - 产品的名称 类别 - 产品类别 折扣价 - 产品的折扣价 实际价格 - 产品的实际价格 折扣百分比 - 该产品的折扣百分比 评分 - 产品评分 评分人数 - 投票给亚马逊评分的人数 关于产品 - 产品描述 用户ID - 为该产品撰写评论的用户的ID 用户名 - 对该产品撰写评论的用户姓名 评论ID - 用户评论的ID 评论标题 - 简短评论 评论内容 - 长评论 img_link - 产品图片链接 product_link - 产品官方网站链接 灵感 亚马逊是一家美国科技跨国公司,其业务兴趣包括电子商务,他们在那里购买和存储库存,并负责从发货和定价到客户服务和退货的一切事情。我创建这个数据集是为了让人们可以玩弄这个数据集,并如下面所述进行许多事情。 数据集操作指南 理解数据集层次结构 数据预处理 探索性数据分析 数据可视化 构建推荐系统 这是一个关于在这个数据集上可以执行的一些操作的列表。 不仅限于所提到的那些内容,还可以做更多的事情。

2025-07-25

微软MSFT每日股价数据集,该数据集提供了微软公司(MSFT)从1986-3-13到2025-7-15的历史股票价格变动的全面记录 作为一家领先的科技巨头,微软的股票受到投资者、分析师和研究人员的跟踪

数据量:1986-3-13 —2025-7-15 (交易日数据) 该数据集提供了微软公司(MSFT)从1986-3-13到2025-7-15的历史股票价格变动的全面记录。作为一家领先的科技巨头,微软的股票受到投资者、分析师和研究人员的广泛跟踪。该数据涵盖了每日交易活动,可用于财务分析、机器学习项目和教育目的,对于进行金融分析、交易策略开发或时间序列建模的任何人来说都非常有用。 数据介绍: 日期: 交易日期 (YYYY-MM-DD) 开盘: 开盘价 最高: 交易日内达到的最高价格 最低: 交易日最低价 收盘: 收盘价 Adj Close: 调整收盘价(考虑了股息和股票拆分) 交易量: 某一天的总交易量 该数据集的价值在于: 时间序列分析: 分析亚马逊股票价格随时间变化的趋势和模式。 预测: 使用统计或机器学习技术建立预测模型,以预测未来的股票价格。 技术分析:应用传统的金融指标和策略(例如,移动平均线、RSI、MACD)来研究价格走势。 事件影响研究:研究外部事件(收益发布、产品发布、宏观经济新闻)对亚马逊股价的影响。 投资组合模拟: 使用历史数据对交易策略进行回测或模拟投资组合。 教育目的: 教授或学习有关金融市场、数据处理和数据可视化。 示例分析 可视化微软几十年来的股价增长。 比较MSFT在重大市场事件(崩盘、繁荣等)中的股票表现。 分析财报或产品发布对价格走势的影响。 将交易量与价格波动相关联。

2025-07-23

亚马逊每日股价数据集(1997-2025年),数据集包含从1997-5-15到2025-7-16的亚马逊AMZN历史每日价格数据

数据集概述 该数据集包含从1997-5-15到2025-7-16的亚马逊AMZN历史每日价格数据。对于进行金融分析、交易策略开发或时间序列建模的任何人来说都非常有用。 数据介绍: 日期: 交易会的日期(格式为 YYYY-MM-DD)。 开盘价: 亚马逊股票在该日交易的开盘价。 最高: 在交易期间达到的最高价格。 最低: 一天中的最低价格。 收盘价: 该日亚马逊股票的收盘价。 调整收盘价: 调整后的收盘价,考虑了任何可能影响价格的公司行为(例如,股息、股票拆分)。 交易量: 该日交易的股票总数。 该数据集的价值在于: 时间序列分析: 分析亚马逊股票价格随时间变化的趋势和模式。 预测: 使用统计或机器学习技术建立预测模型,以预测未来的股票价格。 技术分析:应用传统的金融指标和策略(例如,移动平均线、RSI、MACD)来研究价格走势。 事件影响研究:研究外部事件(收益发布、产品发布、宏观经济新闻)对亚马逊股价的影响。 投资组合模拟: 使用历史数据对交易策略进行回测或模拟投资组合。 教育目的: 教授或学习有关金融市场、数据处理和数据可视化。

2025-07-22

全球地震事件数据集(2000-2025),数据集包含175000+条记录,该数据集包含2000年至2025年间的详细全球地震记录,数据来源于美国地质调查局(USGS) 它非常适合用于机器学习项目

概述 数据集包含175000+条记录,该数据集包含2000年至2025年间的详细全球地震记录,数据来源于美国地质调查局(USGS)。它非常适合用于机器学习项目、时空分析和地震模拟——特别是那些专注于地震震级预测和基于位置的地震模式建模的项目。 数据来源:美国地质调查局(USGS) 原始数据由美国地质调查局(USGS)通过全球地震台网收集和维护。每个地震事件由传感器检测,其属性(包括震级、深度、位置和时间)由地震学家计算和审核。然后通过USGS地震目录发布这些事件,并附带错误估计、站覆盖和审核状态等元数据。 列名描述 time 地震的日期和时间(协调世界时) latitude 震中纬度 longitude 震中经度 depth 地震深度(公里) mag 报道的震级 magType 震级类型(例如,mb、ml、mw) nst 报告该事件的地震台数量 gap 地震台之间的方位间隙(度) dmin 到最近地震台的最小距离(度) rms 幅度残差的均方根 net 报告该事件的地震网络 id 唯一事件ID updated 记录的最后更新时间戳 place 事件的人类可读位置 type 事件类型(例如,地震,采石场爆炸 水平误差:震中位置的不确定性(公里) horizontalError 水平误差:水平位置的不确定性 (公里) depthError 深度误差:深度的不确定性(公里) magError 震级误差:震级的不确定性 magNst 震级台站数:用于震级计算的台站数 status 状态:事件的审核状态(例如,已审核,自动) locationSource 位置来源:位置数据的来源 magSource 震级来源:震级数据的来源 潜在用例 利用机器学习/人工智能进行地震震级预测 时空地震趋势分析 灾害风险模拟工具 学术和黑客松地质科学、人工智能和灾害管理研究项目

2025-07-22

以太坊ETH,7个交易所每分钟股价数据集(2016-2025),包含自2016年9月29日至2025 年 7 月 19 日来自多个交易所的原始1分钟历史数据

数据集概述 该数据集包含自2016年9月29日至2025 年 7 月 19 日来自多个交易所的原始1分钟历史数据(不是所有交易所都是从2016年开始),涵盖了多平台提供的整个以太坊(ETH/USDT)交易历史价格数据 此数据集包括每个时间范围内的以下字段: 开放时间:间隔开始的时间戳。 开盘价:在该时间段开始时的比特币价格。 最高:该区间内的最高价格。 低: 该区间内的最低价格。 收盘价:在该区间结束时的比特币价格。 交易量:该时间段内的交易量。 关闭时间:该间隔关闭的时间戳。 报价资产交易量:在该时间段内交易的总报价资产量。 交易次数:在该区间内执行的交易数量。 买家购买基础资产量:买家购买的基础资产量。 买家报价资产交易量:买家花费的报价资产交易量。 忽略:来自币安API的占位符列,分析中未使用。 文件内容 ETHUSD_1m_Binance.csv: 从2017年至2025 年 7 月 19 日的1分钟间隔数据。 ETHUSD_1m_BitMEX.csv: 从2018年至2025 年 7 月 19 日的1分钟间隔数据。 ETHUSD_1m_Bitfinex.csv: 从2017年至2025 年 7 月 19 日的1分钟间隔数据。 ETHUSD_1m_Bitstamp.csv: 从2017年至2025 年 7 月 19 日的1天间隔数据。 ETHUSD_1m_Coinbase.csv: 从2016年至2025 年 7 月 19 日的1天间隔数据。 ETHUSD_1m_Combined_Index.csv: 从2016年至2025 年 7 月 19 日的1天间隔数据。 ETHUSD_1m_KuCoin.csv: 从2018年至2025 年 7 月 19 日的1天间隔数据。 ETHUSD_1m_OKX.csv: 从2018年至2025 年 7 月 19 日的1天间隔

2025-07-21

糖尿病指标数据集,这个原始数据集包含441,455个个体的回应,共有330个特征 这些特征要么是直接向参与者提问的问题,要么是基于个人参与者回应的计算变量

数据介绍: 数据集一: 糖尿病_012 0 = 无糖尿病 1 = 糖尿病前期 2 = 糖尿病 高血压 0 = 无高血压 1 = 高血压 高胆固醇 0 = 无高胆固醇 1 = 高胆固醇 胆固醇检查 0 = 5 年内未进行胆固醇检查 1 = 5 年内进行胆固醇检查 体重指数 身体质量指数 吸烟者 您一生中至少吸过 100 支香烟吗?[注:5 包 = 100 支香烟] 0 = 否 1 = 是 中风 (曾经被告知)你中风了。0 = 没有 1 = 有 心脏病或心脏病发作 冠心病 (CHD) 或心肌梗塞 (MI) 0 = 否 1 = 是 身体活动 过去 30 天内的体力活动 - 不包括工作 0 = 否 1 = 是 水果 每天吃水果 1 次或多次 0 = 否 1 = 是 蔬菜 每天食用蔬菜 1 次或多次 0 = 否 1 = 是 酗酒 重度饮酒者(成年男性每周饮酒超过 14 杯,成年女性每周饮酒超过 7 杯) 0 = 否 1 = 是 任何医疗保健 有任何形式的医疗保险,包括健康保险、HMO 等预付费计划等。0 = 没有 1 = 有 医疗成本 过去12个月里,您是否曾需要去看医生,但因为费用问题而无法就医?0 = 没有 1 = 有 GenHlth 您认为您的总体健康状况是:等级 1-5 1 = 优秀 2 = 非常好 3 = 好 4 = 一般 5 = 差 心理健康 现在想想你的心理健康状况,包括压力、抑郁和情绪问题。过去30天里,你的心理健康状况有多少天不太好?量表1-30天 物理健康 现在想想你的身体健康状况,包括身体疾病和受伤,过去30天里,你的身体健康状况有多少天不太好?量表1-30天 差异行走 您走路或爬楼梯有严重困难吗?0 = 没有 1 = 有 其他详见PDF数据集说明

2025-06-19

电子商务交易数据集,包含50,000个电子商务交易记录,使其非常适合数据分析、可视化和机器学习实验 它包括用户人口统计信息、产品类别、购买金额、支付方式和交易日期,以帮助理解消费者行为和销售趋势

数据量:50000 概述 该数据集包含50,000个电子商务交易记录,使其非常适合数据分析、可视化和机器学习实验。它包括用户人口统计信息、产品类别、购买金额、支付方式和交易日期,以帮助理解消费者行为和销售趋势。 数据集详情 列 Transaction_ID – 每笔交易的唯一标识符 User_Name – 随机生成的用户名 Age – 用户年龄(18到70岁) Country – 交易发生的国家(从10个国家中随机选择) Product_Category – 购买商品的类别(例如,电子产品、服装、书籍) Purchase_Amount – 交易总金额(在$5到$1000之间随机生成) Payment_Method – 付款使用的支付方式(例如,信用卡、PayPal、UPI) Transaction_Date – 购买日期(在过去的两年内随机选择) 使用案例 销售和趋势分析 – 识别最受欢迎的产品类别 客户分段 – 根据年龄和国家分析消费行为 欺诈检测 – 检测不寻常的购买模式 机器学习 – 训练推荐系统或收入预测的模型

2025-06-18

中国工商银行每日股价数据集,该数据集包含 中国工商银行 (ICBC) (1398.HK) 的历史股票市场数据,从 2006年10月27日到2025年2月28日

数据介绍: date:交易日期(YYYY-MM-DD格式) open:当日开盘价 high:当日最高价 low:当日最低价 close:当日收盘价 adj_close:调整后的收盘价(考虑拆股/股息) volume:当日交易股票总数 这个数据集对以下方面有价值: 股票市场分析:分析工行股票表现随时间的变化趋势。 时间序列预测:建立机器学习模型以预测未来的股票价格。 技术分析:使用OHLC数据识别模式以制定交易策略。 金融研究:研究宏观经济因素对股票价格的影响。

2025-06-18

青少年心理健康数据集,数据集旨在通过匿名化社交媒体活动、调查和可穿戴设备数据来分析青少年的心理健康模式,重点关注压力水平 它包含5000条记录和11个字段,每个字段捕捉用户日常行为和健康的不同方面

数据集旨在通过匿名化社交媒体活动、调查和可穿戴设备数据来分析青少年的心理健康模式,重点关注压力水平。它包含5000条记录和11个字段,每个字段捕捉用户日常行为和健康的不同方面。目标是检测社交媒体使用、身体活动、睡眠模式和压力水平等因素之间的相关性。该数据集对青少年心理健康研究、早期压力检测和预防性护理都有助益。 数据介绍: 用户身份:每个参与者的唯一标识符。 年龄:参与者的年龄(13-19岁)。 性别:参与者的性别(“M”代表男性,“F”代表女性)。 社交媒体时间:每天在社交媒体上花费的时间。 锻炼时间:每天锻炼的时间。 睡眠时间:每天的总睡眠时间。 屏幕使用时间:每天的总屏幕时间(包括社交媒体、游戏等)。 调查压力分数:自我报告的压力分数(1 到 5 的等级,其中 1 表示低压力,5 表示高压力)。 可穿戴设备压力评分:通过可穿戴设备测量的压力分数(范围0到1)。 支持系统 学业成绩

2025-06-18

电商个性化推荐​​数据集,旨在支持多智能体 AI 系统的开发,该系统通过提供超个性化的产品推荐来增强电子商务平台 它捕获客户互动、产品属性和推荐模式,从而实现 AI 驱动的洞察,以提高参与度、转化率和

客户数据集:10000条 产品数据集:10000条 数据集组成 客户数据:浏览行为、购买历史、人口统计和参与度指标。 产品信息:产品描述、类别、定价、可用性和用户评级。 推荐日志:历史推荐、客户回应和点击率。 用户细分:根据购买行为、频率、偏好和兴趣进行聚类。 客户数据集包含: 客户 ID 年龄 性别 地点 浏览历史 购买历史 客户细分 平均订单价值 假期 季节 产品数据集包含: 产品 ID 类别 子類別 价格 品牌 类似产品的平均评分 产品评级 客户评论情绪评分 假期 季节 该数据集旨在支持多智能体 AI 系统的开发,该系统通过提供超个性化的产品推荐来增强电子商务平台。它捕获客户互动、产品属性和推荐模式,从而实现 AI 驱动的洞察,以提高参与度、转化率和客户保留率。

2025-06-18

苹果每日股价数据集,该数据集包含从1980 年 12 月12日到2025 年 6 月 10 日的AAPL历史每日价格数据 对于进行金融分析、交易策略开发或时间序列建模的任何人来说都非常有用

数据集概述 该数据集包含从1980 年 12 月12日到2025 年 6 月 10 日的AAPL历史每日价格数据。对于进行金融分析、交易策略开发或时间序列建模的任何人来说都非常有用。 此数据集包括以下字段: Date: 记录的日期 Open: 开盘价 High: 今日最高价 Low: 今日最低价 Close: 收盘价 Volume: 交易的股票数量 潜在用途 分析股票价格随时间变化的趋势和波动性。 创建和测试用于股票变动的预测模型。 金融、统计或数据科学的教育演示。 可视化市场模式和进行投资研究。

2025-06-18

XAUUSD黄金股价数据集,该数据集包含从2004-06-11到最近可用日期的XAU/USD历史每日黄金价格数据 对于进行金融分析、交易策略开发或时间序列建模的任何人来说都非常有用

数据集概述 该数据集包含从2004-06-11到 2025 年 6 月 6 日的XAU/USD历史每日黄金价格数据。对于进行金融分析、交易策略开发或时间序列建模的任何人来说都非常有用。 提供2个粒度的数据 1小时 (1H) 1天 (1D) 此数据集包括每个时间范围内的以下字段: 开放时间:间隔开始的时间戳。 开盘价:在该时间段开始时的比特币价格。 最高:该区间内的最高价格。 低: 该区间内的最低价格。 收盘价:在该区间结束时的比特币价格。 交易量:该时间段内的交易量。 文件内容 XAU_1d_data.csv: 2004-06-11到 2025 年 6 月 6 日的15分钟间隔数据。 XAU_1h_data.csv: 2004-06-11到 2025 年 6 月 6 日的1小时间隔数据。

2025-06-18

比特币每日股价数据集,包含(2018-2025)- 15分钟、1小时、4小时和1天,四个时间周期的粒度数据

数据集概述 该数据集包含自2018年1月1日至现在的比特币(BTC/USDT)历史价格数据。提供四个时间周期的粒度蜡烛图数据: 15分钟 (15M) 1小时 (1H) 4小时 (4H) 1天 (1D) 此数据集包括每个时间范围内的以下字段: 开放时间:间隔开始的时间戳。 开盘价:在该时间段开始时的比特币价格。 最高:该区间内的最高价格。 低: 该区间内的最低价格。 收盘价:在该区间结束时的比特币价格。 交易量:该时间段内的交易量。 关闭时间:该间隔关闭的时间戳。 报价资产交易量:在该时间段内交易的总报价资产量。 交易次数:在该区间内执行的交易数量。 买家购买基础资产量:买家购买的基础资产量。 买家报价资产交易量:买家花费的报价资产交易量。 忽略:来自币安API的占位符列,分析中未使用。 文件内容 btc_15m_data_2018_to_present.csv: 2018年至现在的15分钟间隔数据。 btc_1h_data_2018_to_present.csv: 2018年至今的1小时间隔数据。 btc_4h_data_2018_to_present.csv: 从2018年到现在的4小时间隔数据。 btc_1d_data_2018_to_present.csv: 从2018年到现在的1天间隔数据。

2025-06-15

纽约证券交易所个股每日股价数据集,时间从1962 年 1 月 2 日- 2025 年 6 月 13 日(交易日数据)

共1920个文件(文件大小:450M左右) 数据纬度: Ticker:股票代码 Date:数据点的日期 Open:开盘价 High:当日达到的最高值 Low:当日达到的最低值 Close:收盘价 纽约证券交易所 1920 只股票,每日信息范围从 1962 年 1 月 2 日至 2025 年 6 月 13 日,数据为交易日数据,且不是每个股都从1962 年 1 月 2 日起。 潜在用例 使用 LSTM、ARIMA 或 Prophet 进行时间序列预测 回测交易策略 分析长期金融趋势和波动性 可视化重大事件(例如互联网泡沫)周围的市场行为 比较实际股价与调整后股价 项目构想 使用深度学习预测次日价格 使用 Plotly 创建交互式可视化 训练 ML 模型来检测看涨/看跌模式 计算 RSI、MACD、布林带等技术指标

2025-06-15

比亚迪股价数据集,该数据集包含历史股票价格数据,涵盖比亚迪股份有限公司 (BYDDF),时间线为2009-02-13 -2025-03-14

数据介绍 日期– 交易日期 开盘价——股票开盘价 最高价– 交易日内达到的最高价格 最低价– 交易日内最低价格 收盘价——交易时段结束时的收盘价 调整收盘价– 考虑股息/拆股后调整后的收盘价 成交量——当天交易的股票总数 潜在用例 股价可视化– 绘制 BYDDF 股票多年来的走势图 移动平均线分析– 识别支撑位和阻力位 市场情绪研究– 分析新闻/事件如何影响股价 股市分析– 研究比亚迪的历史价格趋势 时间序列预测– 构建 ML 模型来预测未来股价 电动汽车行业洞察– 分析市场事件如何影响比亚迪的股票 比较分析– 与特斯拉 (TSLA)、蔚来汽车和其他电动汽车股票进行比较

2025-06-15

NVIDIA股票价格数据集,该数据集提供了NVIDIA Corporation股票市场表现的详细历史概述,包括每日交易记录,使其适用于时间序列分析、金融预测、算法交易模拟和教育目的

数据:1999.1.22-2025.06.10 该数据集提供了NVIDIA Corporation股票市场表现的详细历史概述,涵盖了多年的关键交易数据。NVIDIA是一家领先的科技公司,以图形处理单元(GPU)和人工智能的创新而闻名。了解其股票行为可以为对金融建模和市场趋势感兴趣的投资者、分析师、学生和研究人员提供宝贵的见解。 该数据集包括每日交易记录,使其适用于时间序列分析、金融预测、算法交易模拟和教育目的。用户可以探索英伟达(NVIDIA)的股票价格如何随时间演变,识别模式或异常,并构建或基准测试预测模型。 列描述 日期:具体的交易日期,格式为 YYYY-MM-DD。 关闭:交易日结束时英伟达股票的收盘价。 高:在交易时段内,NVIDIA股票达到的最高价格。 低:在交易时段内记录的最低价格。 开盘:英伟达股票当天开始交易的价格。 交易量:该日期交换的NVIDIA股票总数。 潜在用途 分析NVIDIA股票价格随时间变化的趋势和波动性。 创建和测试用于股票变动的预测模型。 金融、统计或数据科学的教育演示。 可视化市场模式和进行投资研究。

2025-06-15

标普500指数每日股价数据集,数据量:2010 年 1 月 4 日- 2025 年 6 月 13 日(交易日数据)

文件大小:143M左右 数据介绍: Ticker:股票代码 Date:数据点的日期 Open:开盘价 High:当日达到的最高值 Low:当日达到的最低值 Close:收盘价 Volume:股票交易量 潜在用例 使用 LSTM、ARIMA 或 Prophet 进行时间序列预测 回测交易策略 分析长期金融趋势和波动性 可视化重大事件(例如互联网泡沫)周围的市场行为 比较实际股价与调整后股价 项目构想 使用深度学习预测次日价格 使用 Plotly 创建交互式可视化 训练 ML 模型来检测看涨/看跌模式 计算 RSI、MACD、布林带等技术指标

2025-06-15

纳斯达克股票市场个股每日股价数据集,纳斯达克上的3298只股票,每日股价信息从1962年1月2日到2025年6月13日

数据量:1962 年 1 月 2 日— 2025 年 6 月 13 日(交易日数据) 共3298个文件(文件大小:450M左右) 数据介绍: Ticker:股票代码 Date:数据点的日期 Open:开盘价 High:当日达到的最高值 Low:当日达到的最低值 Close:收盘价 纳斯达克 3298 只股票,每日信息范围从 1962 年 1 月 2 日至 2025 年 6 月 13 日,数据为交易日数据,且不是每个股都从1962 年 1 月 2 日起。 潜在用例 使用 LSTM、ARIMA 或 Prophet 进行时间序列预测 回测交易策略 分析长期金融趋势和波动性 可视化重大事件(例如互联网泡沫)周围的市场行为 比较实际股价与调整后股价 项目构想 使用深度学习预测次日价格 使用 Plotly 创建交互式可视化 训练 ML 模型来检测看涨/看跌模式 计算 RSI、MACD、布林带等技术指标

2025-06-15

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除