20230613期:ENVI深度学习模块实现水质提取

本文是地理学研究生使用ENVI5.6进行的一次水体识别实验,通过深度学习模块创建ROI,训练单类模型,识别水体,包括河流和细小水体,结果显示比水体指数法更准确,且能剔除云的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


本文详细介绍了使用ENVI5.6软件处理哨兵-2A遥感影像的步骤,重点是通过深度学习模块进行水体识别。操作流程包括打开影像数据、安装深度学习模块、使用向导工具新建感兴趣区(ROI)、绘制ROI、保存文件、训练单类别模型、构建标签栅格、加载影像数据、训练新模型、设置参数以及查看结果。最终结果表明,该方法比传统的水体指数法更准确,能够有效识别细小水体和河流,并剔除云的影响。文章鼓励读者关注和分享,促进交流与学习。


默认数据:哨兵-2A遥感影像

借助ENVI5.6软件打开需要处理的影像数据:

打开-ENVI5.6深度学习模块:(没有该模块需要重新安装该模块)

点击向导工具(按照向导流程处理数据)

新建感兴趣区,添加文件夹并命名:

 左侧点击“+号”,添加ROI名称:

 

 右侧添加所需绘制的影像底图(即加载的影像):

 点击“draw”,进行绘制感兴趣区界面:

 输入roi名称,选择绘制类型(河流推荐线型,第三个):

进行绘制(漫长的过程):

 绘制完毕或者暂停绘制,需要先保存文件,点击“save as”:

 打开ENVI deep learning 向导,训练一个新模型:

 依次点击“ Train a single-class model”:

 点击“ build laber raster from roi”

 输入影像数据1及roi数据,并保存输出位置:

 点击ok,等待输出:

 等待影像地图2的加载:

 加载完毕后,点击第二项,训练模型(train model):

 点击新训练模型(new model):

 输入训练新模型的名称、尺寸、波段数及输出位置:

漫长的等待:

 

 训练完毕后,输入刚刚训练的模型、需要训练的影像数据:

 

设置参数:(迭代次数、模糊边界等),具体参数如图:

 等待

 完成后,按照向导继续点击:

 输入影像数据:

 漫长的等待:

 完成后会自动跳转网页页面,查看进度:

 漫长的等待:

 查看结果:

效果还是不错的,比水体指数法更准确(课程有对比实验),并且云也没有显示,剔除了云的影响。细小水体和河流也都识别出来了。


喜欢本篇文章请多多关注,您的鼓励是我最大的动力。欢迎大家互相分享交流。(aaanimals)


python 遥感图像 水体提取系统 基于python深度学习实现高分辨率城市遥感图像的水体提取系统源码.zip 深度学习高分辨率城市遥感图像的水体提取系统源码.zip python 遥感图像 水体提取系统 基于python深度学习实现高分辨率城市遥感图像的水体提取系统源码.zip 深度学习高分辨率城市遥感图像的水体提取系统源码.zip python 遥感图像 水体提取系统 基于python深度学习实现高分辨率城市遥感图像的水体提取系统源码.zip 深度学习高分辨率城市遥感图像的水体提取系统源码.zippython 遥感图像 水体提取系统 基于python深度学习实现高分辨率城市遥感图像的水体提取系统源码.zip 深度学习高分辨率城市遥感图像的水体提取系统源码.zip python 遥感图像 水体提取系统 基于python深度学习实现高分辨率城市遥感图像的水体提取系统源码.zip 深度学习高分辨率城市遥感图像的水体提取系统源码.zip 【备注】 项目多为高分毕设,评审平均分达到95分以上,都经过本地验证,运行OK后上传,可直接运行起来。 主要针对计算机相关专业的正在做毕设的学生和需要项目实战的Java、JavaScript、c#、游戏开发、小程序开发学习者、深度学习等专业方向。 也可作为课程设计、末大作业。包含:项目源码、数据库、项目说明等,该项目可以直接作为毕设、课程设计使用。 也可以用来学习参考借鉴!
ENVI中安装深度学习模块需要确保系统满足特定的硬件和软件要求,并按照正确的步骤进行操作。ENVI深度学习模块是基于TensorFlow构建的,因此需要依赖于Python环境以及相关的库支持[^1]。 ### 安装步骤 1. **检查系统要求** - **操作系统**:支持Windows 10(64位)和Linux(Ubuntu 18.04或更高版本)。 - **GPU支持**:推荐使用NVIDIA GPU(至少4GB显存),并安装CUDA Toolkit和cuDNN库。 - **Python环境**:ENVI深度学习模块依赖于Python 3.7或更高版本。 - **TensorFlow版本**:ENVI深度学习模块使用TensorFlow 2.x版本。 2. **安装ENVI和IDL** - 确保已经安装了ENVI和IDL(Interactive Data Language)。ENVI深度学习模块是基于IDL开发的,因此需要IDL运行时环境。 3. **安装Python和相关库** - 安装Anaconda或Miniconda,创建一个独立的Python环境。 - 安装必要的Python库,如TensorFlow、Keras、NumPy、Pandas等。 - 配置ENVI与Python之间的连接,确保ENVI能够调用Python脚本。 4. **配置ENVI深度学习模块** - 在ENVI中打开“Preferences”设置,找到“Deep Learning”选项。 - 设置Python解释器路径,确保ENVI能够找到已安装的Python环境。 - 配置GPU加速选项(如果使用GPU)。 5. **验证安装** - 在ENVI中运行一个简单的深度学习示例,如图像分类或目标检测,以验证模块是否安装成功。 ### 示例代码 以下是一个简单的Python脚本示例,用于测试ENVI深度学习模块是否能够调用TensorFlow: ```python import tensorflow as tf # 检查TensorFlow版本 print("TensorFlow version:", tf.__version__) # 创建一个简单的模型 model = tf.keras.Sequential([ tf.keras.layers.Dense(10, activation='relu', input_shape=(None, 5)), tf.keras.layers.Dense(1) ]) # 编译模型 model.compile(optimizer='adam', loss='mse') # 生成随机数据 import numpy as np x = np.random.random((100, 5)) y = np.random.random((100, 1)) # 训练模型 model.fit(x, y, epochs=5) ``` ### 注意事项 - **兼容性**:确保所使用的Python版本和TensorFlow版本与ENVI兼容。 - **性能优化**:如果使用GPU加速,确保CUDA和cuDNN版本与TensorFlow兼容。 - **更新模块**:定检查ENVI深度学习模块的更新,以获取最新的功能和性能改进。 通过以上步骤,用户可以在ENVI中成功安装深度学习模块,并开始进行遥感图像处理和深度学习模型的应用。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

aaanimals

蟹蟹老板的鼓励~~~~~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值