ETL数据清洗(每行字段大于11)

本文介绍了一个MapReduce任务,重点讲解了LogMapper类,它负责对Web日志进行过滤和清洗,通过解析日志长度判断是否合法,并使用NullWritable作为输出值。LogDriver类则展示了整个MapReduce作业的配置和运行过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2)需求分析

需要在Map阶段对输入的数据根据规则进行过滤清洗。

3)实现代码

(1)编写LogMapper类

package com.atguigu.mapreduce.weblog;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

 

public class LogMapper extends Mapper<LongWritable, Text, Text, NullWritable>{

  

   Text k = new Text();

  

   @Override

   protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

     

      // 1 获取1行数据

      String line = value.toString();

     

      // 2 解析日志

      boolean result = parseLog(line,context);

     

      // 3 日志不合法退出

      if (!result) {

          return;

      }

     

      // 4 设置key

      k.set(line);

     

      // 5 写出数据

      context.write(k, NullWritable.get());

   }

 

   // 2 解析日志

   private boolean parseLog(String line, Context context) {

 

      // 1 截取

      String[] fields = line.split(" ");

     

      // 2 日志长度大于11的为合法

      if (fields.length > 11) {

 

          // 系统计数器

          context.getCounter("map", "true").increment(1);

          return true;

      }else {

          context.getCounter("map", "false").increment(1);

          return false;

      }

   }

}

(2)编写LogDriver类

package com.atguigu.mapreduce.weblog;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

 

public class LogDriver {

 

   public static void main(String[] args) throws Exception {

 

// 输入输出路径需要根据自己电脑上实际的输入输出路径设置

        args = new String[] { "e:/input/inputlog", "e:/output1" };

 

      // 1 获取job信息

      Configuration conf = new Configuration();

      Job job = Job.getInstance(conf);

 

      // 2 加载jar

      job.setJarByClass(LogDriver.class);

 

      // 3 关联map

      job.setMapperClass(LogMapper.class);

 

      // 4 设置最终输出类型

      job.setOutputKeyClass(Text.class);

      job.setOutputValueClass(NullWritable.class);

 

      // 设置reducetask个数为0

      job.setNumReduceTasks(0);

 

      // 5 设置输入和输出路径

      FileInputFormat.setInputPaths(job, new Path(args[0]));

      FileOutputFormat.setOutputPath(job, new Path(args[1]));

 

      // 6 提交

      job.waitForCompletion(true);

   }

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值