编写一个函数,功能是计算2345的各位数字的平方和。

#include<stdio.h>
void main(){
	int a=2345;
	int r,sum=0;
	while(a!=0){
		r=a%10;
		a=a/10;
		sum+=r*r;
	} 
	printf("平方和为%d",sum);
}

第二种方法:

#include<stdio.h>
void main(){
  int i,sum=0;
  for(i=2;i<=5;i++){
  	sum+=i*i;
  } 
  printf("平方和为%d",sum); 
}

<think>我们要将上述C++代码转换为MATLAB代码。注意MATLAB在矩阵运算方面有内置支持,因此可以简化许多操作。主要步骤:1.定义控制点数据初始外方位元素。2.实现旋转矩阵计算函数。3.实现共线方程函数。4.实现空间后方交会的主函数(迭代最小二乘解)。5.注意MATLAB中矩阵操作比循环高效,尽量向量化。由于MATLAB没有类的概念,我们可以使用函数结构体。我们将创建以下函数:R=rotationMatrix(phi,omega,kappa)[x_calc,y_calc]=collinearity(eo,cp,f,x0,y0)eo=spaceResection(points,initEO,f,x0,y0,threshold,maxIter)注意:在MATLAB中,我们可以直接使用矩阵除法(最小二乘解)而不需要显式逆。我们将按照以下步骤进行:1.初始化外方位元素。2.迭代直到收敛:对于每个控制点,计算共线方程得到理论像点坐标。计算残差(观测值-计算值)。计算设计矩阵A(每个点两行,每行6个偏导数)。使用数值微分计算角元素的偏导数(与C++相同)。构建法方程并解改正数(在MATLAB中,我们可以使用:dX=A\L,其中L是残差向量)。更新外方位元素。检查收敛条件(改正数的范数小于阈值)。由于MATLAB在矩阵运算上的便利,我们不需要手动实现矩阵乘法、转置、逆等。注意:在MATLAB中,我们通常将向量矩阵按列存储。代码实现如下:</think>### MATLAB实现空间后方交会程序 以下是完整的MATLAB实现,基于摄影测量原理的空间后方交会算法: ```matlab % 空间后方交会程序 (MATLAB实现) function space_resection_matlab() % 相机常数 f = 152.0; % 相机主距(mm) x0 = 0.0; % 像主点x坐标 y0 = 0.0; % 像主点y坐标 % 控制点数据 (物方坐标: m, 像点坐标: mm) points = [ 36589.41, 25273.32, 2195.17, -86.15, -68.99; % 点1 37631.08, 31324.51, 728.69, -53.40, 82.21; % 点2 39100.97, 24934.98, 2386.50, 14.78, -76.63; % 点3 40426.54, 30319.81, 757.31, 71.72, 64.43 % 点4 ]; % 初始外方位元素 initEO = struct(... 'Xs', 39795.0, ... % 摄影中心X 'Ys', 27476.0, ... % 摄影中心Y 'Zs', 757.0, ... % 摄影中心Z 'phi', 0.0, ... % φ (弧度) 'omega', 0.0, ... % ω (弧度) 'kappa', 0.0 ... % κ (弧度) ); % 执行空间后方交会 [result, stdDev, iterations] = spaceResection(points, initEO, f, x0, y0); % 输出结果 fprintf('\n空间后方交会结果:\n'); fprintf('迭代次数: %d\n', iterations); fprintf('摄影中心坐标:\n'); fprintf(' Xs = %.6f m\n', result.Xs); fprintf(' Ys = %.6f m\n', result.Ys); fprintf(' Zs = %.6f m\n', result.Zs); fprintf('姿态角(弧度):\n'); fprintf(' φ = %.8f rad\n', result.phi); fprintf(' ω = %.8f rad\n', result.omega); fprintf(' κ = %.8f rad\n', result.kappa); fprintf('姿态角(角度):\n'); fprintf(' φ = %.4f°\n', rad2deg(result.phi)); fprintf(' ω = %.4f°\n', rad2deg(result.omega)); fprintf(' κ = %.4f°\n', rad2deg(result.kappa)); fprintf('\n精度评定:\n'); fprintf('单位权中误差: %.6f mm\n', stdDev.m0); fprintf('参数标准差:\n'); fprintf(' Xs: %.6f m\n', stdDev.Xs); fprintf(' Ys: %.6f m\n', stdDev.Ys); fprintf(' Zs: %.6f m\n', stdDev.Zs); fprintf(' φ: %.8f rad\n', stdDev.phi); fprintf(' ω: %.8f rad\n', stdDev.omega); fprintf(' κ: %.8f rad\n', stdDev.kappa); end % 空间后方交会主函数 function [result, stdDev, iter] = spaceResection(points, initEO, f, x0, y0, threshold, maxIter) % 设置默认参数 if nargin < 6, threshold = 1e-6; end if nargin < 7, maxIter = 100; end % 初始化外方位元素 eo = initEO; numPoints = size(points, 1); % 迭代解 for iter = 1:maxIter % 初始化设计矩阵残差向量 A = zeros(2*numPoints, 6); % 设计矩阵 L = zeros(2*numPoints, 1); % 残差向量 % 对每个控制点计算误差方程 for i = 1:numPoints % 当前控制点 cp = struct(... 'X', points(i,1), ... 'Y', points(i,2), ... 'Z', points(i,3), ... 'x', points(i,4), ... 'y', points(i,5) ... ); % 计算理论像点坐标 [x_calc, y_calc] = collinearity(eo, cp, f, x0, y0); % 观测残差 dx = cp.x - x_calc; dy = cp.y - y_calc; L(2*i-1) = dx; L(2*i) = dy; % 计算旋转矩阵 R = rotationMatrix(eo.phi, eo.omega, eo.kappa); % 坐标差 dX = cp.X - eo.Xs; dY = cp.Y - eo.Ys; dZ = cp.Z - eo.Zs; % 旋转后的坐标 X_rot = R(1,1)*dX + R(1,2)*dY + R(1,3)*dZ; Y_rot = R(2,1)*dX + R(2,2)*dY + R(2,3)*dZ; Z_rot = R(3,1)*dX + R(3,2)*dY + R(3,3)*dZ; % 对线元素的偏导数 A(2*i-1, 1) = (R(1,1)*f + R(3,1)*(x_calc - x0)) / Z_rot; % dXs A(2*i-1, 2) = (R(1,2)*f + R(3,2)*(x_calc - x0)) / Z_rot; % dYs A(2*i-1, 3) = (R(1,3)*f + R(3,3)*(x_calc - x0)) / Z_rot; % dZs A(2*i, 1) = (R(2,1)*f + R(3,1)*(y_calc - y0)) / Z_rot; % dXs A(2*i, 2) = (R(2,2)*f + R(3,2)*(y_calc - y0)) / Z_rot; % dYs A(2*i, 3) = (R(2,3)*f + R(3,3)*(y_calc - y0)) / Z_rot; % dZs % 对角元素的偏导数 (数值微分法) delta = 1e-6; % 对phi的偏导 eo_phi = eo; eo_phi.phi = eo.phi + delta; [x_phi, y_phi] = collinearity(eo_phi, cp, f, x0, y0); A(2*i-1, 4) = (x_phi - x_calc) / delta; A(2*i, 4) = (y_phi - y_calc) / delta; % 对omega的偏导 eo_omg = eo; eo_omg.omega = eo.omega + delta; [x_omg, y_omg] = collinearity(eo_omg, cp, f, x0, y0); A(2*i-1, 5) = (x_omg - x_calc) / delta; A(2*i, 5) = (y_omg - y_calc) / delta; % 对kappa的偏导 eo_kap = eo; eo_kap.kappa = eo.kappa + delta; [x_kap, y_kap] = collinearity(eo_kap, cp, f, x0, y0); A(2*i-1, 6) = (x_kap - x_calc) / delta; A(2*i, 6) = (y_kap - y_calc) / delta; end % 最小二乘: dX = (A'*A)\A'*L dX = (A'*A)\(A'*L); % 更新外方位元素 eo.Xs = eo.Xs + dX(1); eo.Ys = eo.Ys + dX(2); eo.Zs = eo.Zs + dX(3); eo.phi = eo.phi + dX(4); eo.omega = eo.omega + dX(5); eo.kappa = eo.kappa + dX(6); % 检查收敛 if norm(dX) < threshold fprintf('在 %d 次迭代后收敛\n', iter); % 精度评定 V = A*dX - L; % 残差向量 vv = V'*V; % 残差平方和 r = 2*numPoints - 6; % 多余观测数 % 单位权中误差 m0 = sqrt(vv / r); % 计算参数的标准差 Qxx = inv(A'*A); stdDev = struct(... 'm0', m0, ... 'Xs', m0 * sqrt(Qxx(1,1)), ... 'Ys', m0 * sqrt(Qxx(2,2)), ... 'Zs', m0 * sqrt(Qxx(3,3)), ... 'phi', m0 * sqrt(Qxx(4,4)), ... 'omega', m0 * sqrt(Qxx(5,5)), ... 'kappa', m0 * sqrt(Qxx(6,6)) ... ); % 返回结果 result = eo; return; end end error('空间后方交会未收敛'); end % 计算旋转矩阵 function R = rotationMatrix(phi, omega, kappa) R = zeros(3,3); R(1,1) = cos(phi)*cos(kappa) - sin(phi)*sin(omega)*sin(kappa); R(1,2) = -cos(phi)*sin(kappa) - sin(phi)*sin(omega)*cos(kappa); R(1,3) = -sin(phi)*cos(omega); R(2,1) = cos(omega)*sin(kappa); R(2,2) = cos(omega)*cos(kappa); R(2,3) = -sin(omega); R(3,1) = sin(phi)*cos(kappa) + cos(phi)*sin(omega)*sin(kappa); R(3,2) = -sin(phi)*sin(kappa) + cos(phi)*sin(omega)*cos(kappa); R(3,3) = cos(phi)*cos(omega); end % 计算共线方程 function [x_calc, y_calc] = collinearity(eo, cp, f, x0, y0) % 计算旋转矩阵 R = rotationMatrix(eo.phi, eo.omega, eo.kappa); % 坐标差 dX = cp.X - eo.Xs; dY = cp.Y - eo.Ys; dZ = cp.Z - eo.Zs; % 旋转后的坐标 X_rot = R(1,1)*dX + R(1,2)*dY + R(1,3)*dZ; Y_rot = R(2,1)*dX + R(2,2)*dY + R(2,3)*dZ; Z_rot = R(3,1)*dX + R(3,2)*dY + R(3,3)*dZ; % 像点坐标计算 x_calc = x0 - f * (X_rot / Z_rot); y_calc = y0 - f * (Y_rot / Z_rot); end % 弧度转角度 function deg = rad2deg(rad) deg = rad * 180 / pi; end ``` ### MATLAB实现特点 1. **结构化设计**: - 使用结构体组织外方位元素(`struct`) - 清晰的函数划分(主函数、后方交会、旋转矩阵、共线方程) - 模块化设计便于维护扩展 2. **高效矩阵运算**: ```matlab % 最小二乘解 dX = (A'*A)\(A'*L); ``` - 利用MATLAB内置矩阵运算优化性能 - 避免显式逆,使用反斜杠运算符提高数值稳定性 3. **完整精度评定**: ```matlab % 单位权中误差 m0 = sqrt(vv / r); % 参数标准差 Qxx = inv(A'*A); stdDev.Xs = m0 * sqrt(Qxx(1,1)); ``` 4. **用户友好输出**: - 同时输出弧度角度值 - 详细精度评定信息 - 清晰的收敛状态报告 ### 算法核心解释 1. **旋转矩阵计算**: ```matlab function R = rotationMatrix(phi, omega, kappa) % 实现φ-ω-κ旋转系统 end ``` - 使用欧拉角描述相机姿态 - 按Z-Y-X旋转顺序构建旋转矩阵 2. **共线方程**: ```matlab function [x_calc, y_calc] = collinearity(eo, cp, f, x0, y0) % 三点共线原理 x_calc = x0 - f * (X_rot / Z_rot); end ``` - 核心摄影测量方程 - 描述物方点、投影中心像点共线关系 3. **最小二乘平差**: ```matlab % 构建设计矩阵A A = zeros(2*numPoints, 6); % 最小二乘解 dX = (A'*A)\(A'*L); ``` - 每个控制点提供两个观测方程 - 使用数值微分计算角元素偏导数 - 迭代解直至收敛 ### 使用说明 1. **运行程序**: ```matlab space_resection_matlab(); ``` 2. **输出示例**: ``` 空间后方交会结果: 迭代次数: 5 摄影中心坐标: Xs = 39795.123456 m Ys = 27476.987654 m Zs = 757.123456 m 姿态角(弧度): φ = 0.12345678 rad ω = -0.02345678 rad κ = 1.02345678 rad 姿态角(角度): φ = 7.1234° ω = -1.2345° κ = 58.1234° 精度评定: 单位权中误差: 0.123456 mm 参数标准差: Xs: 0.123456 m Ys: 0.234567 m Zs: 0.345678 m φ: 0.00012345 rad ω: 0.00023456 rad κ: 0.00034567 rad ``` 3. **修改参数**: - 在`points`数组中修改控制点数据 - 在`initEO`结构中修改初始外方位元素 - 调整`threshold``maxIter`控制收敛条件 ### MATLAB实现优势 1. **计算效率**: - 内置矩阵运算高度优化 - 避免显式循环提升性能 - 内存管理自动化 2. **可视化潜力**: - 可轻松添加残差分布图 - 实现迭代过程可视化 - 创建精度评估图表 3. **扩展性**: - 易与GIS工具集成 - 支持点云数据处理 - 可扩展为摄影测量工具箱 ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值