<think>我们要求将上述C++代码转换为MATLAB代码。注意MATLAB在矩阵运算方面有内置支持,因此可以简化许多操作。主要步骤:1.定义控制点数据和初始外方位元素。2.实现旋转矩阵计算函数。3.实现共线方程函数。4.实现空间后方交会的主函数(迭代最小二乘求解)。5.注意MATLAB中矩阵操作比循环高效,尽量向量化。由于MATLAB没有类的概念,我们可以使用函数和结构体。我们将创建以下函数:R=rotationMatrix(phi,omega,kappa)[x_calc,y_calc]=collinearity(eo,cp,f,x0,y0)eo=spaceResection(points,initEO,f,x0,y0,threshold,maxIter)注意:在MATLAB中,我们可以直接使用矩阵除法(最小二乘解)而不需要显式求逆。我们将按照以下步骤进行:1.初始化外方位元素。2.迭代直到收敛:对于每个控制点,计算共线方程得到理论像点坐标。计算残差(观测值-计算值)。计算设计矩阵A(每个点两行,每行6个偏导数)。使用数值微分计算角元素的偏导数(与C++相同)。构建法方程并求解改正数(在MATLAB中,我们可以使用:dX=A\L,其中L是残差向量)。更新外方位元素。检查收敛条件(改正数的范数小于阈值)。由于MATLAB在矩阵运算上的便利,我们不需要手动实现矩阵乘法、转置、求逆等。注意:在MATLAB中,我们通常将向量和矩阵按列存储。代码实现如下:</think>### MATLAB实现空间后方交会程序
以下是完整的MATLAB实现,基于摄影测量原理的空间后方交会算法:
```matlab
% 空间后方交会程序 (MATLAB实现)
function space_resection_matlab()
% 相机常数
f = 152.0; % 相机主距(mm)
x0 = 0.0; % 像主点x坐标
y0 = 0.0; % 像主点y坐标
% 控制点数据 (物方坐标: m, 像点坐标: mm)
points = [
36589.41, 25273.32, 2195.17, -86.15, -68.99; % 点1
37631.08, 31324.51, 728.69, -53.40, 82.21; % 点2
39100.97, 24934.98, 2386.50, 14.78, -76.63; % 点3
40426.54, 30319.81, 757.31, 71.72, 64.43 % 点4
];
% 初始外方位元素
initEO = struct(...
'Xs', 39795.0, ... % 摄影中心X
'Ys', 27476.0, ... % 摄影中心Y
'Zs', 757.0, ... % 摄影中心Z
'phi', 0.0, ... % φ (弧度)
'omega', 0.0, ... % ω (弧度)
'kappa', 0.0 ... % κ (弧度)
);
% 执行空间后方交会
[result, stdDev, iterations] = spaceResection(points, initEO, f, x0, y0);
% 输出结果
fprintf('\n空间后方交会结果:\n');
fprintf('迭代次数: %d\n', iterations);
fprintf('摄影中心坐标:\n');
fprintf(' Xs = %.6f m\n', result.Xs);
fprintf(' Ys = %.6f m\n', result.Ys);
fprintf(' Zs = %.6f m\n', result.Zs);
fprintf('姿态角(弧度):\n');
fprintf(' φ = %.8f rad\n', result.phi);
fprintf(' ω = %.8f rad\n', result.omega);
fprintf(' κ = %.8f rad\n', result.kappa);
fprintf('姿态角(角度):\n');
fprintf(' φ = %.4f°\n', rad2deg(result.phi));
fprintf(' ω = %.4f°\n', rad2deg(result.omega));
fprintf(' κ = %.4f°\n', rad2deg(result.kappa));
fprintf('\n精度评定:\n');
fprintf('单位权中误差: %.6f mm\n', stdDev.m0);
fprintf('参数标准差:\n');
fprintf(' Xs: %.6f m\n', stdDev.Xs);
fprintf(' Ys: %.6f m\n', stdDev.Ys);
fprintf(' Zs: %.6f m\n', stdDev.Zs);
fprintf(' φ: %.8f rad\n', stdDev.phi);
fprintf(' ω: %.8f rad\n', stdDev.omega);
fprintf(' κ: %.8f rad\n', stdDev.kappa);
end
% 空间后方交会主函数
function [result, stdDev, iter] = spaceResection(points, initEO, f, x0, y0, threshold, maxIter)
% 设置默认参数
if nargin < 6, threshold = 1e-6; end
if nargin < 7, maxIter = 100; end
% 初始化外方位元素
eo = initEO;
numPoints = size(points, 1);
% 迭代求解
for iter = 1:maxIter
% 初始化设计矩阵和残差向量
A = zeros(2*numPoints, 6); % 设计矩阵
L = zeros(2*numPoints, 1); % 残差向量
% 对每个控制点计算误差方程
for i = 1:numPoints
% 当前控制点
cp = struct(...
'X', points(i,1), ...
'Y', points(i,2), ...
'Z', points(i,3), ...
'x', points(i,4), ...
'y', points(i,5) ...
);
% 计算理论像点坐标
[x_calc, y_calc] = collinearity(eo, cp, f, x0, y0);
% 观测残差
dx = cp.x - x_calc;
dy = cp.y - y_calc;
L(2*i-1) = dx;
L(2*i) = dy;
% 计算旋转矩阵
R = rotationMatrix(eo.phi, eo.omega, eo.kappa);
% 坐标差
dX = cp.X - eo.Xs;
dY = cp.Y - eo.Ys;
dZ = cp.Z - eo.Zs;
% 旋转后的坐标
X_rot = R(1,1)*dX + R(1,2)*dY + R(1,3)*dZ;
Y_rot = R(2,1)*dX + R(2,2)*dY + R(2,3)*dZ;
Z_rot = R(3,1)*dX + R(3,2)*dY + R(3,3)*dZ;
% 对线元素的偏导数
A(2*i-1, 1) = (R(1,1)*f + R(3,1)*(x_calc - x0)) / Z_rot; % dXs
A(2*i-1, 2) = (R(1,2)*f + R(3,2)*(x_calc - x0)) / Z_rot; % dYs
A(2*i-1, 3) = (R(1,3)*f + R(3,3)*(x_calc - x0)) / Z_rot; % dZs
A(2*i, 1) = (R(2,1)*f + R(3,1)*(y_calc - y0)) / Z_rot; % dXs
A(2*i, 2) = (R(2,2)*f + R(3,2)*(y_calc - y0)) / Z_rot; % dYs
A(2*i, 3) = (R(2,3)*f + R(3,3)*(y_calc - y0)) / Z_rot; % dZs
% 对角元素的偏导数 (数值微分法)
delta = 1e-6;
% 对phi的偏导
eo_phi = eo;
eo_phi.phi = eo.phi + delta;
[x_phi, y_phi] = collinearity(eo_phi, cp, f, x0, y0);
A(2*i-1, 4) = (x_phi - x_calc) / delta;
A(2*i, 4) = (y_phi - y_calc) / delta;
% 对omega的偏导
eo_omg = eo;
eo_omg.omega = eo.omega + delta;
[x_omg, y_omg] = collinearity(eo_omg, cp, f, x0, y0);
A(2*i-1, 5) = (x_omg - x_calc) / delta;
A(2*i, 5) = (y_omg - y_calc) / delta;
% 对kappa的偏导
eo_kap = eo;
eo_kap.kappa = eo.kappa + delta;
[x_kap, y_kap] = collinearity(eo_kap, cp, f, x0, y0);
A(2*i-1, 6) = (x_kap - x_calc) / delta;
A(2*i, 6) = (y_kap - y_calc) / delta;
end
% 最小二乘求解: dX = (A'*A)\A'*L
dX = (A'*A)\(A'*L);
% 更新外方位元素
eo.Xs = eo.Xs + dX(1);
eo.Ys = eo.Ys + dX(2);
eo.Zs = eo.Zs + dX(3);
eo.phi = eo.phi + dX(4);
eo.omega = eo.omega + dX(5);
eo.kappa = eo.kappa + dX(6);
% 检查收敛
if norm(dX) < threshold
fprintf('在 %d 次迭代后收敛\n', iter);
% 精度评定
V = A*dX - L; % 残差向量
vv = V'*V; % 残差平方和
r = 2*numPoints - 6; % 多余观测数
% 单位权中误差
m0 = sqrt(vv / r);
% 计算参数的标准差
Qxx = inv(A'*A);
stdDev = struct(...
'm0', m0, ...
'Xs', m0 * sqrt(Qxx(1,1)), ...
'Ys', m0 * sqrt(Qxx(2,2)), ...
'Zs', m0 * sqrt(Qxx(3,3)), ...
'phi', m0 * sqrt(Qxx(4,4)), ...
'omega', m0 * sqrt(Qxx(5,5)), ...
'kappa', m0 * sqrt(Qxx(6,6)) ...
);
% 返回结果
result = eo;
return;
end
end
error('空间后方交会未收敛');
end
% 计算旋转矩阵
function R = rotationMatrix(phi, omega, kappa)
R = zeros(3,3);
R(1,1) = cos(phi)*cos(kappa) - sin(phi)*sin(omega)*sin(kappa);
R(1,2) = -cos(phi)*sin(kappa) - sin(phi)*sin(omega)*cos(kappa);
R(1,3) = -sin(phi)*cos(omega);
R(2,1) = cos(omega)*sin(kappa);
R(2,2) = cos(omega)*cos(kappa);
R(2,3) = -sin(omega);
R(3,1) = sin(phi)*cos(kappa) + cos(phi)*sin(omega)*sin(kappa);
R(3,2) = -sin(phi)*sin(kappa) + cos(phi)*sin(omega)*cos(kappa);
R(3,3) = cos(phi)*cos(omega);
end
% 计算共线方程
function [x_calc, y_calc] = collinearity(eo, cp, f, x0, y0)
% 计算旋转矩阵
R = rotationMatrix(eo.phi, eo.omega, eo.kappa);
% 坐标差
dX = cp.X - eo.Xs;
dY = cp.Y - eo.Ys;
dZ = cp.Z - eo.Zs;
% 旋转后的坐标
X_rot = R(1,1)*dX + R(1,2)*dY + R(1,3)*dZ;
Y_rot = R(2,1)*dX + R(2,2)*dY + R(2,3)*dZ;
Z_rot = R(3,1)*dX + R(3,2)*dY + R(3,3)*dZ;
% 像点坐标计算
x_calc = x0 - f * (X_rot / Z_rot);
y_calc = y0 - f * (Y_rot / Z_rot);
end
% 弧度转角度
function deg = rad2deg(rad)
deg = rad * 180 / pi;
end
```
### MATLAB实现特点
1. **结构化设计**:
- 使用结构体组织外方位元素(`struct`)
- 清晰的函数划分(主函数、后方交会、旋转矩阵、共线方程)
- 模块化设计便于维护和扩展
2. **高效矩阵运算**:
```matlab
% 最小二乘求解
dX = (A'*A)\(A'*L);
```
- 利用MATLAB内置矩阵运算优化性能
- 避免显式求逆,使用反斜杠运算符提高数值稳定性
3. **完整精度评定**:
```matlab
% 单位权中误差
m0 = sqrt(vv / r);
% 参数标准差
Qxx = inv(A'*A);
stdDev.Xs = m0 * sqrt(Qxx(1,1));
```
4. **用户友好输出**:
- 同时输出弧度和角度值
- 详细精度评定信息
- 清晰的收敛状态报告
### 算法核心解释
1. **旋转矩阵计算**:
```matlab
function R = rotationMatrix(phi, omega, kappa)
% 实现φ-ω-κ旋转系统
end
```
- 使用欧拉角描述相机姿态
- 按Z-Y-X旋转顺序构建旋转矩阵
2. **共线方程**:
```matlab
function [x_calc, y_calc] = collinearity(eo, cp, f, x0, y0)
% 三点共线原理
x_calc = x0 - f * (X_rot / Z_rot);
end
```
- 核心摄影测量方程
- 描述物方点、投影中心和像点共线关系
3. **最小二乘平差**:
```matlab
% 构建设计矩阵A
A = zeros(2*numPoints, 6);
% 最小二乘求解
dX = (A'*A)\(A'*L);
```
- 每个控制点提供两个观测方程
- 使用数值微分计算角元素偏导数
- 迭代求解直至收敛
### 使用说明
1. **运行程序**:
```matlab
space_resection_matlab();
```
2. **输出示例**:
```
空间后方交会结果:
迭代次数: 5
摄影中心坐标:
Xs = 39795.123456 m
Ys = 27476.987654 m
Zs = 757.123456 m
姿态角(弧度):
φ = 0.12345678 rad
ω = -0.02345678 rad
κ = 1.02345678 rad
姿态角(角度):
φ = 7.1234°
ω = -1.2345°
κ = 58.1234°
精度评定:
单位权中误差: 0.123456 mm
参数标准差:
Xs: 0.123456 m
Ys: 0.234567 m
Zs: 0.345678 m
φ: 0.00012345 rad
ω: 0.00023456 rad
κ: 0.00034567 rad
```
3. **修改参数**:
- 在`points`数组中修改控制点数据
- 在`initEO`结构中修改初始外方位元素
- 调整`threshold`和`maxIter`控制收敛条件
### MATLAB实现优势
1. **计算效率**:
- 内置矩阵运算高度优化
- 避免显式循环提升性能
- 内存管理自动化
2. **可视化潜力**:
- 可轻松添加残差分布图
- 实现迭代过程可视化
- 创建精度评估图表
3. **扩展性**:
- 易与GIS工具集成
- 支持点云数据处理
- 可扩展为摄影测量工具箱
###