2021年数学建模国赛B题(烯烃制备)优秀论文.doc

本博客下载链接包含修改的word版本, 可免费下载阅览学习, 也可作为数学建模相关课程作业修改上交:

链接:https://pan.baidu.com/s/1HxzDk3q0p6y2xpuJyxPgvw?pwd=qtnc

提取码:qtnc

      在化工产品及医药的生产领域,C4 烯烃是一种重要的化工原料。一般用化石能源作为制备,但实际化石能源短缺且污染环境,相比之下,乙醇不仅来源广泛且环保健康,故用新型方法制备 C4 烯烃是社会发展的必然选择。本文研究的是乙醇催化偶合制备 C4 烯烃的工艺条件对结果的影响并对其进行建模分析。

针对问题一,首先用 Python 对附件 1 中温度与乙醇转化率的关系进行可视化分析,从分析结果得出温度与乙醇转化率和 C4 烯烃选择性有着一定的线性关系,其次建立协方差分析模型用 MATLAB 中的 Corr 函数求出相关系数,最后得出随着温度的升高乙醇转化率也随之升高但单位时间内转化率增长幅度在减小。用同样的方法对附件2 给定条件下不同时间下得出的实验结果进行分析得出随着时间的推移乙醇转化率和烯烃收率越来越低且时间与 C4 烯烃选择性的关系不大。

针对问题二,首先针对附件 1 中不同的催化剂组合类型进行归类,将催化剂组合分为 Co 负载量、乙醇浓度、装料比

针对数学建模B的思路,可以考虑以下几个方面: 1. 对于问1,目基本上是关于乙醇转化率(A1)、C4烯烃的选择性(A2)与温度(B)之间的关系。可以使用对应分析模型、相关性分析和Copula核函数等方法来寻找A和B之间的关系。此外,可以重点分析催化剂组合对结果的影响,对应分析结果通常较好。难度并不大,可以使用SPSS进行计算。 2. 对于问2,可以使用对应分析的变形方法,将数据进行归纳总结,并构建多个新的矩阵,代入对应分析模型进行分析。同时,可以通过对应分析图中的点的距离进行分析,从而得出结果的合理性。 3. 对于问3,可以考虑研究C4烯烃收率尽可能高的因素,例如装料方式、邻近配比、不同催化剂和临近温度等。为了确保设计的合理性,需要将设计数据代入问3的模型中进行对比,以验证模型的可行性和合理性。 4. 对于问4,可以将其作为本文的创新点,并验证问3实验设计的正确性和合理性。可以设计额外实验,从装料方式、邻近配比、不同催化剂和临近温度等方面入手,以尽可能高的C4烯烃收率为出发点。通过将设计数据代入问3的模型中进行对比,确保模型的可行性和合理性。 综上所述,针对数学建模B,可以运用对应分析、相关性分析、Copula核函数等方法来寻找变量之间的关系,并验证设计的合理性和模型的可行性。同时,对于问3和问4,需要设计实验并进行数据分析,以验证模型的正确性和提出创新点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值