本博客下载链接包含修改的word版本, 可免费下载阅览学习, 也可作为数学建模相关课程作业修改上交:
链接:https://pan.baidu.com/s/1HxzDk3q0p6y2xpuJyxPgvw?pwd=qtnc
提取码:qtnc
尽管近年来煤矿安全形势有所改善,但随着煤炭开采向深部推进,冲击地压风险仍显著上升,特别是冲击地压已成为威胁煤矿安全生产的关键因素,因此监测声发射和电磁辐射信号,以识别和预测冲击地压前兆特征,对提前预警和防控冲击地压具有重要意义。本文通过对冲压地压信号进行时频域特征进行提取并建立决策树、LSTM模型完成了对冲压地压危险信号的识别和预测。
针对问题1,本文首先筛选附件1的干扰信号,并进行可视化。然后提取干扰信号的时域特征:均值、方差、峰度和脉冲计数,频域指标:频谱能量、主要频谱成分、频谱峰值和谱密度,然后采取滑动窗口分别提取附件2中3个时间段的时频域特征,窗口大小为50。最后建立干扰信号识别模型,设置误差率为0.1,找到相似度与附件1中干扰信号较高的信号识别为干扰信号。
针对问题2,首先采用滑动窗口特征提取,对附件1当中的两种信号数据的前兆特征数据(B类),采取滑动窗口进行时频域特征的提取构成训练集并进行可视化,窗口大小为50,步长为20,对附件2数据同样采取特征提取构成测试集。然后基于附件1和附件2构建好模型需要的训练集和测试集数据,接下来进行随机样本过采样和数据标准化,然后选取决策树模型进行分类预测,结果是EMR分类准确率为99.35%,精确率为0.99,召回率为1,F1分数为0.99,AUC为0.99;AE分类准确率为98.43%,精确率为0.97,召回率为1,F1分数为0.98,AUC为0.98。最后给出了决策树模型的混淆矩阵、ROC曲线以及结构图。
针对问题3,首先针对附件3的10个时间段的数据进行小波变换降噪,然后进行滑动窗口均值化处理,窗口大小为50,步长为1,接着建立10个LSTM模型分别预测10个时间段未来,100个时间戳上的信号数据,然后针对预测得出的10组数据利用问题2相同的方法提取特征并做差分后代入问题2训练好的决策树模型进行预测,然后将未来100个时间戳的识别为前兆信号的概率取平均最后得到结果:EMR信号5个时间段的最后发生前兆信号的概率分别为0.1667、0.7140、0.5992、0.8571、0.7495;AE信号5个时间段的最后发生前兆信号的概率分别为0.1667、0.2854、0.6、0.1429、0.4995。
最后,对模型进行优缺点评价和推广,本文建立的模型可以为煤矿开采的冲压地压检测工作提供量化保障。