代码随想录算法训练营day52 || 300.最长递增子序列 ● 674. 最长连续递增序列 ● 718. 最长重复子数组

问题1:300. 最长递增子序列 - 力扣(LeetCode)

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

思路:题目要求单调递增子序列长度,并没有要求连续。首先定义dp,并明确dp的含义为第i个数的最长严格单调递增子序列长度,只需将第i个数与i前面的数进行逐一比较即可得出,思路较为简单,代码如下:

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        if(nums.size() == 1) return 1;
        vector<int> dp(nums.size(),1);
        int result = 0;
        for(int i = 1; i < nums.size(); i++){
            for(int j = 0; j < i; j++){
                if(nums[i] > nums[j]) dp[i]=max(dp[i],dp[j]+1);
                if(dp[i] > result) result = dp[i];
            }
        }
        return result;
    }
};

问题2:674. 最长连续递增序列 - 力扣(LeetCode)

给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。

连续递增的子序列 可以由两个下标 l 和 rl < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。

思路:此题要求的是连续,仍然是标准的动态规划思路,初始化dp为1,直接对相邻两个数进行比较,若后一个数小于前一个数,则后一个数的dp等于max(dp[i],dp[i-1]+1),代码如下

class Solution {
public:
    int findLengthOfLCIS(vector<int>& nums) {
        if(nums.size() == 1) return 1;
        vector<int> dp(nums.size(),1);
        int result = 0;
        for(int i = 1; i < nums.size(); i++){
            if(nums[i]>nums[i-1]) dp[i] = max(dp[i],dp[i-1]+1);
            if(dp[i] > result) result = dp[i];
        }
        return result;
    }
};

问题3:718. 最长重复子数组 - 力扣(LeetCode)

给两个整数数组 nums1 和 nums2 ,返回 两个数组中 公共的 、长度最长的子数组的长度 

思路:题目中给出了两个不同的数组,根据动规定义一个二维数组,同时初始化,然后进行遍历,代码如下:

class Solution {
public:
    int findLength(vector<int>& nums1, vector<int>& nums2) {
        vector<vector<int>> dp(nums1.size()+1,vector<int>(nums2.size()+1,0));
        int result = 0;
        for(int i = 1; i <= nums1.size(); i++){
            for(int j = 1; j <= nums2.size(); j++){
                if(nums1[i-1] == nums2[j-1]) dp[i][j] = dp[i-1][j-1]+1;
                if(dp[i][j] > result) result = dp[i][j];
            }
        }
        return result;
    }
};

### 代码随想录算法训练营 Day20 学习内容与作业 #### 动态规划专题深入探讨 动态规划是一种通过把原问题分解为相对简单的子问题的方式来求解复杂问题的方法[^1]。 #### 主要学习内容 - **背包问题系列** - 背包问题是典型的动态规划应用场景之一。这类题目通常涉及给定容量的背包以及一系列具有不同价值和重量的物品,目标是在不超过总容量的情况下最大化所选物品的价值。 - **状态转移方程构建技巧** - 构建合适的状态转移方程对于解决动态规划问题是至关重要的。这涉及到定义好dp数组(或表格),并找到从前一个状态到下一个状态之间的关系表达式[^2]。 - **优化空间复杂度方法** - 对于某些特定类型的DP问题,可以采用滚动数组等方式来减少所需的空间开销,从而提高程序效率[^3]。 #### 实战练习题解析 ##### 题目:零钱兑换 (Coin Change) 描述:给定不同面额的硬币 coins 和一个总金额 amount。编写函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 `-1`。 解决方案: ```python def coinChange(coins, amount): dp = [float('inf')] * (amount + 1) dp[0] = 0 for i in range(1, amount + 1): for coin in coins: if i >= coin and dp[i - coin] != float('inf'): dp[i] = min(dp[i], dp[i - coin] + 1) return dp[-1] if dp[-1] != float('inf') else -1 ``` 此段代码实现了基于自底向上的迭代方式解决问题,其中 `dp[i]` 表示达到金额 `i` 所需最小数量的硬币数目[^4]。 ##### 题目:完全平方数 (Perfect Squares) 描述:给出正整数 n ,找出若干个不同的 完全平方数 (比如 1, 4, 9 ...)使得它们的和等于n 。问至少需要几个这样的完全平方数? 解答思路同上一题类似,只是这里的“硬币”变成了各个可能的完全平方数值。 ```python import math def numSquares(n): square_nums = set([i*i for i in range(int(math.sqrt(n))+1)]) dp = [float('inf')] *(n+1) dp[0] = 0 for i in range(1,n+1): for sq in square_nums: if i>=sq: dp[i]=min(dp[i],dp[i-sq]+1); return dp[n]; ``` 这段代码同样运用了动态规划的思想去寻找最优解路径,并利用集合存储所有小于等于输入值的最大平方根内的平方数作为候选集[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值