- 博客(3)
- 收藏
- 关注
原创 推荐系统实践——冷启动问题
物品的内容通过向量空间模型表示,该模型会将物品表示为一个关键词向量。没有大量用户数据的情况下设计个性化推荐系统并且让用户对推荐结果满意从而愿意使用该推荐系统。③给用户推荐他所在分类的用户最喜欢的物品,每个分类(特征)用户最喜欢的物品加权求和。5、对于新加入的物品,利用内容信息,将其推荐给喜欢过和它们相似的物品的用户;心情、剧情、类别、时间、地点、观众、获奖、风格、态度、画面、标记等。6、系统冷启动时,需加入专家知识,虚宿建立物品相关度表。用户第一次访问推荐系统时,不立即进行推荐,而是。
2024-09-19 15:30:46
946
原创 推荐系统实践——利用用户行为数据
基于用户行为数据分析的推荐算法在学术上也称协同过滤算法用户行为数据最简单的存在形式为日志用户行为:显性反馈行为(直接评分)和隐性反馈行为(页面浏览行为)(1)无上下文的隐性反馈数据集:仅包含用户ID和物品ID;(2)无*显性*:用户ID、物品ID、用户对物品评分;(3)有 隐性:用户ID、物品ID和用户对物品产生行为的时间戳;(4)有 显性:用户ID、物品ID和用户对物品评分和评分行为发生的时间戳;
2024-09-14 14:37:08
1580
原创 推荐系统实践——好的推荐系统
推荐系统:在信息过载时,一种为客户提供筛选、提出建议供用户选择的工具。推荐系统的基本任务是联系用户和物品,解决信息过载的问题。
2024-09-13 15:49:01
1265
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人