随着深度学习技术的飞速发展,基于学习的图像压缩技术逐渐成为研究热点。特别是在JPEG AI的标准化进程中,如何提高图像压缩的效率和质量成为了亟待解决的问题。当前,JPEG AI采用了一种基于深度神经网络的编码-解码架构,并结合超先验概率模型进行熵编码。然而,在高级操作点(HighOP)中使用的多阶段上下文模型(MCM)在进行内预测时,存在子图像特征空间不对齐和残差特征分布不一致的问题,这影响了压缩效率和图像质量。
山东大学李帅:JPEG AI多级上下文模型下的对齐帧内预测和超尺度解码器-论论全球
用于学习图像压缩的多级空间上下文模型 | ICASSP 2023 - 实时互动网
学习型图像压缩(LIC)具有最先进的率失真(RD)性能,许多最近的方法优于最好的手工方法,如 BPG 和 VVC 。许多最近的最先进的 LIC 编解码器利用空间上下文模型,其基于已解码的周围潜在代码推断当前潜在代码的概率分布,大大优于基于超先验的方法 。
许多以前的空间上下文模型具有自回归结构:如