高光谱图像.tif/.tiff格式转化为.mat格式(以Washington DC和Houston DFC 2018为例)

参考:tif和mat格式相互转换_tiff转mat-CSDN博客 

tif转mat (以Washington DC(1280×307×191)为例)

import scipy.io as sio  # 导入scipy.io库用于读写MAT文件
import skimage.io       # 导入scikit-image的io模块用于图像读取
import numpy as np      # 导入numpy库用于数组操作

# 定义高光谱图像文件路径(原始数据格式为tif)
imgpath = r'D:\A.HSI Dataset\Washington DC(1280×307×191)\dc.tif'
# 使用skimage读取tif格式的高光谱图像数据
imggt = skimage.io.imread(imgpath)

# 使用transpose()方法调整数据维度顺序
# 原始数据维度为[通道数, 高度, 宽度],调整为[高度, 宽度, 通道数]
imggt_reshaped = np.transpose(imggt, (1, 2, 0))

# 转换数据类型为float64(对应MATLAB中的double类型)
# 确保数据精度满足后续处理需求
imggt_double = imggt_reshaped.astype('float64')

# 保存处理后的数据为MAT文件
# 指定变量名为'dc',便于MATLAB环境中加载使用
sio.savemat(r"D:\A.HSI Dataset\Washington DC(1280×307×191)\dc.mat",
            {'dc': imggt_double})

tiff转mat(以Houston DFC 2018(1202×4172×50)为例 ) 

import scipy.io as sio  # 导入scipy.io库用于读写MAT文件
import skimage.io       # 导入scikit-image的io模块用于图像读取
import numpy as np      # 导入numpy库用于数组操作

# 定义高光谱图像文件路径(原始数据格式为tif)
imgpath = r'D:\A.HSI Dataset\2018_DFTC\20170218_UH_CASI_S4_NAD83.tiff'
# 使用skimage读取tif格式的高光谱图像数据
imggt = skimage.io.imread(imgpath)

# 使用transpose()方法调整数据维度顺序
# 原始数据维度为[通道数, 高度, 宽度],调整为[高度, 宽度, 通道数]
#imggt_reshaped = np.transpose(imggt, (1, 2, 0))

# 转换数据类型为float64(对应MATLAB中的double类型)
# 确保数据精度满足后续处理需求
#imggt_double = imggt_reshaped.astype('float64')

imggt_double = imggt.astype('float64')
# 保存处理后的数据为MAT文件
# 指定变量名为'dc',便于MATLAB环境中加载使用
sio.savemat(r"D:\A.HSI Dataset\2018_DFTC\HoustonDFC2018.mat",
            {'Houston2018': imggt_double})

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值