基于SURF的多阶段车牌定位算法

本文提出了一种基于SURF算法的多阶段车牌定位模型,旨在准确检测不同条件下的车牌。该模型利用特征矩阵的行协方差系数定义候选区域,并通过四维特征描述符提取车牌信息,结合Hessian矩阵对字符结构进行度量,提高了在变形、模糊、遮挡和光照变化情况下的定位能力。实验表明,该模型在CCPD数据集上表现良好,无需特定环境参数设置,具有较好的通用性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

不同类型车辆的车牌形状、大小及颜色有所不同。为对不同拍摄视角、尺度、背景、光照强度及各种形式遮挡下的各型车牌进行准确检测,提出一种基于SURF算法的多阶段车牌定位模型。该模型考虑车牌丰富的纹理和结构信息,借助SURF特征矩阵的行协方差系数分布定义车牌候选区域的特征,从而得到多个差异明显的分块区域;同时提出一个新的四维特征描述符精准提取车牌候选区域,并基于Hessian矩阵对车牌字符结构特征的度量实现对车牌区域的判别。通过在CCPD数据集上进行测试,发现该模型不需要任何受控条件或环境参数设置,具有定位变形、模糊、污损以及光照变化情况下车牌的能力。

0 引言

基于计算机视觉的智能交通系统(Intelligent Traffic SystemITS)已在多种实时应用中发挥关键作用,如电子通行费支付

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗伯特之技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值