摘要
不同类型车辆的车牌形状、大小及颜色有所不同。为对不同拍摄视角、尺度、背景、光照强度及各种形式遮挡下的各型车牌进行准确检测,提出一种基于SURF算法的多阶段车牌定位模型。该模型考虑车牌丰富的纹理和结构信息,借助SURF特征矩阵的行协方差系数分布定义车牌候选区域的特征,从而得到多个差异明显的分块区域;同时提出一个新的四维特征描述符精准提取车牌候选区域,并基于Hessian矩阵对车牌字符结构特征的度量实现对车牌区域的判别。通过在CCPD数据集上进行测试,发现该模型不需要任何受控条件或环境参数设置,具有定位变形、模糊、污损以及光照变化情况下车牌的能力。
0 引言
基于计算机视觉的智能交通系统(Intelligent Traffic System,ITS)已在多种实时应用中发挥关键作用,如电子通行费支付