数据分析与挖掘(三):掌握使用库函数进行数据分析的方法

数据分析与挖掘(三):掌握使用库函数进行数据分析的方法

一、实验目的及要求

掌握使用库函数进行数据分析的方法

掌握K-means算法的代码实现

对比不同聚类算法性能

二、实验设备(环境)及要求

Jupyter notebook、百度 AI studio

三、实验内容

1.使用库函数完成鸢尾花K-means聚类分析。

(1) 实现基本步骤

调用函数代码段:

np.random.seed(5)

iris = datasets.load_iris()

X = iris.data

y = iris.target

est = KMeans(n_clusters=3)

est.fit(X)

labels = est.labels_

显示结果代码段:

fig = plt.figure(1, figsize=(4, 3))

ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)

ax.scatter(X[:, 3], X[:, 0], X[:, 2],c=labels.astype(np.float), edgecolor='k')

ax.w_xaxis.set_ticklabels([])

ax.w_yaxis.set_ticklabels([])

ax.w_zaxis.set_ticklabels([])

ax.set_xlabel('花瓣宽度')

ax.set_ylabel('萼片长度')

ax.set_zlabel('花瓣长度')

ax.set_title("3类")

ax.dist = 12

plt.show()

(2) 运行(K-means聚类图)

在这里插入图片描述

2.使用库函数完成鸢尾花DBSCAN聚类分析。

(1) 实现基本步骤

调用函数代码段:

centers = [[1, 1], [-1, -1], [1, -1]]

X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4, random_state=0)

X = StandardScaler().fit_transform(X)

\# Compute DBSCA
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值