数据分析与挖掘(三):掌握使用库函数进行数据分析的方法
一、实验目的及要求
掌握使用库函数进行数据分析的方法
掌握K-means算法的代码实现
对比不同聚类算法性能
二、实验设备(环境)及要求
Jupyter notebook、百度 AI studio
三、实验内容
1.使用库函数完成鸢尾花K-means聚类分析。
(1) 实现基本步骤
调用函数代码段:
np.random.seed(5)
iris = datasets.load_iris()
X = iris.data
y = iris.target
est = KMeans(n_clusters=3)
est.fit(X)
labels = est.labels_
显示结果代码段:
fig = plt.figure(1, figsize=(4, 3))
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)
ax.scatter(X[:, 3], X[:, 0], X[:, 2],c=labels.astype(np.float), edgecolor='k')
ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])
ax.set_xlabel('花瓣宽度')
ax.set_ylabel('萼片长度')
ax.set_zlabel('花瓣长度')
ax.set_title("3类")
ax.dist = 12
plt.show()
(2) 运行(K-means聚类图)
2.使用库函数完成鸢尾花DBSCAN聚类分析。
(1) 实现基本步骤
调用函数代码段:
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4, random_state=0)
X = StandardScaler().fit_transform(X)
\# Compute DBSCA