OpenCV 直方图处理

本文介绍了OpenCV中的直方图处理,包括如何绘制直方图,使用掩膜进行绘制,直方图均衡化以提升图像对比度,直方图比较以分析图像相似性,以及直方图阈值化在图像分割中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图像直方图是图像内灰度值的统计特性与图像灰度值之间的函数,直方图统计图像内各个灰度级出现的次数。

案例来源于傅老师。

1.绘制直方图

使用plt.hist()绘制直方图,具体语法为:

matplotlib.pyplot.hist(X, BINS,facecolor='yellowgreen')

X:一维数组

BINS:数组的边界(如256)

使用cv2.calcHist()绘制直方图,具体语法为:

cv2.calcHist(images,channels,mask,histSize,ranges,accumulate)

channels:指定通道编号。通道编号需要用“[]”括起来。

mask:掩模图像。当统计整幅图像的直方图时,将这个值设为None

histSize:BINS的值,该值需要用“[]”括起来。

ranges:即像素值范围。例如,8位灰度图像的像素值范围是[0,255]

accumulate:累计(累积、叠加)标识,默认值为False

使用掩膜进行直方图绘制:

在函数cv2.calcHist()中,参数mask用于标识是否使用掩膜图像。当使用掩膜图像获取直方图时,仅获取掩膜参数mask指定区域的直方图。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wx_57556

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值