二维码识别是视觉模块经常使用到的功能之一。我们将演示如何使用基于瑞芯微RV1106的LockAI视觉识别模块进行二维码识别。
1. 基本知识讲解
1.1 二维码简介
二维码(QR Code)是一种高效的二维条码,能快速存储和读取信息,即使部分损坏也能准确识别。它广泛应用于移动支付、广告、物流、票务等领域,用户只需用智能手机扫描即可获取信息或完成操作,极大提升了效率和便利性。
1.2 二维码识别步骤
二维码识别主要通过两个步骤完成:图像捕捉和解码。
-
图像捕捉:使用设备摄像头拍摄包含二维码的图像。
-
解码:软件处理图像,定位并读取二维码中的数据,转换为原始信息。
常用工具如ZXing和OpenCV支持快速集成到应用中,使用户能轻松扫描并获取二维码信息。
2. C++ API文档
2.1 QRCodeDetector类
2.1.1 头文件
#include <lockzhiner_vision_module/vision/code/code_detector.h>
-
作用:用于声明QRCodeDetector类,使得QRCodeDetector类可以在当前源文件中使用。
2.1.2 构造类对象
lockzhiner_vision_module::vision::QRCodeDetector model;
-
作用:用于实现二维码识别。
-
参数说明:
-
无
-
-
返回值:
-
无
-
2.1.3 Predict函数
auto results = model.Predict(input_mat);
-
作用:QRCodeDetector类中的一个函数,用于实现二维码识别。
-
参数说明:
-
input_mat: 输入参数,类型为cv::Mat,表示要分析的输入图像。
-
-
返回值:
-
返回一个包含二维码检测结果的对象集合。每个Result对象包含二维码的位置信息和解码后的文本内容。
-
2.2 Visualize函数
2.2.1 头文件
#include <lockzhiner_vision_module/vision/utils/visualize.h>
-
作用:用于声明Visualize函数,使得Visualize函数可以在当前源文件中使用。
2.2.2 结果可视化
lockzhiner_vision_module::vision::Visualize(input_image, output_image,
results);
-
参数说明:
-
input_image: 输入参数,表示原始输入图像。
-
output_image: 输出参数,用于存储带有可视化结果的输出图像。
-
results: 输入参数,表示二维码检测的结果集。每个Result对象包含二维码的位置信息和解码后的文本内容。
-
-
返回值:
-
无
-
3. 综合代码介绍
3.1 流程图
3.2 核心代码解析
-
定义检测模型
lockzhiner_vision_module::vision::QRCodeDetector model;
-
调用摄像头捕获图像
cv::VideoCapture cap;
// 设置摄像头获取帧的宽高
cap.set(cv::CAP_PROP_FRAME_WIDTH, 640);
cap.set(cv::CAP_PROP_FRAME_HEIGHT, 480);
cap.open(0);
// wihile循环中的以下代码用于捕获图像帧
cap >> input_mat;
if (input_mat.empty())
{
continue;
}
-
检测二维码
auto results = model.Predict(input_mat);
3.3 完整代码实现
#include <lockzhiner_vision_module/vision/code/code_detector.h>
#include <lockzhiner_vision_module/vision/utils/visualize.h>
#include <lockzhiner_vision_module/edit/edit.h>
#include <chrono>
#include <cstdlib>
#include <ctime>
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std::chrono;
lockzhiner_vision_module::vision::QRCodeDetector model;
int main()
{
// 初始化 edit 模块
lockzhiner_vision_module::edit::Edit edit;
if (!edit.StartAndAcceptConnection())
{
std::cerr << "Error: Failed to start and accept connection." << std::endl;
return EXIT_FAILURE;
}
std::cout << "Device connected successfully." << std::endl;
cv::VideoCapture cap;
// 设置摄像头获取帧的宽高
cap.set(cv::CAP_PROP_FRAME_WIDTH, 640);
cap.set(cv::CAP_PROP_FRAME_HEIGHT, 480);
cap.open(0);
if (!cap.isOpened())
{
std::cerr << "Error: Could not open camera." << std::endl;
return EXIT_FAILURE;
}
cv::Mat input_mat;
while (true)
{
int read_index = 0;
int time_ms = 0;
for (int i = 0; i < 30; i++)
{
high_resolution_clock::time_point start_time = high_resolution_clock::now();
cap >> input_mat;
if (input_mat.empty())
{
continue;
}
// 使用 model 对象的 Predict 方法对输入图像进行预测,获取二维码检测结果
auto results = model.Predict(input_mat);
high_resolution_clock::time_point end_time = high_resolution_clock::now();
auto time_span = duration_cast<milliseconds>(end_time - start_time);
time_ms += time_span.count();
read_index += 1;
cv::Mat output_image;
// 调用 Visualize 函数对原始图像和检测结果进行可视化处理,并将结果存储在 output_image 中
lockzhiner_vision_module::vision::Visualize(input_mat, output_image, results);
edit.Print(output_image);
}
std::cout << "Frames per second: " << 1000.0 / time_ms * read_index << std::endl;
}
cap.release();
return 0;
}
4. 编译调试
4.1 编译环境搭建
-
请确保你已经按照 开发环境搭建指南 正确配置了开发环境。
-
同时以正确连接开发板。
4.2 Cmake介绍
# CMake最低版本要求
cmake_minimum_required(VERSION 3.10)
project(test_qr_code_detector)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
# 定义项目根目录路径
set(PROJECT_ROOT_PATH "${CMAKE_CURRENT_SOURCE_DIR}/../..")
message("PROJECT_ROOT_PATH = " ${PROJECT_ROOT_PATH})
include("${PROJECT_ROOT_PATH}/toolchains/arm-rockchip830-linux-uclibcgnueabihf.toolchain.cmake")
# 定义 OpenCV SDK 路径
set(OpenCV_ROOT_PATH "${PROJECT_ROOT_PATH}/third_party/opencv-mobile-4.10.0-lockzhiner-vision-module")
set(OpenCV_DIR "${OpenCV_ROOT_PATH}/lib/cmake/opencv4")
find_package(OpenCV REQUIRED)
set(OPENCV_LIBRARIES "${OpenCV_LIBS}")
# 定义 LockzhinerVisionModule SDK 路径
set(LockzhinerVisionModule_ROOT_PATH "${PROJECT_ROOT_PATH}/third_party/lockzhiner_vision_module_sdk")
set(LockzhinerVisionModule_DIR "${LockzhinerVisionModule_ROOT_PATH}/lib/cmake/lockzhiner_vision_module")
find_package(LockzhinerVisionModule REQUIRED)
# 定义 ZXing SDK 路径
set(ZXing_ROOT_PATH "${PROJECT_ROOT_PATH}/third_party/zxing-cpp-v2.2.1-lockzhiner-vision-module")
set(ZXing_DIR "${ZXing_ROOT_PATH}/lib/cmake/ZXing")
set(ZXing_INCLUDE_DIRS "${ZXing_ROOT_PATH}/include")
find_package(ZXing REQUIRED)
set(ZXing_LIBRARIES "${ZXing_LIBS}")
# 基本图像处理示例
add_executable(Test-qr_code-detector test_qr_code_detector.cc)
target_include_directories(Test-qr_code-detector PRIVATE
${ZXing_INCLUDE_DIRS}
${LOCKZHINER_VISION_MODULE_INCLUDE_DIRS}
)
target_link_libraries(Test-qr_code-detector PRIVATE ${OPENCV_LIBRARIES} ${LOCKZHINER_VISION_MODULE_LIBRARIES} ${ZXing_LIBRARIES} )
install(
TARGETS Test-qr_code-detector
RUNTIME DESTINATION .
)
4.3 编译项目
使用 Docker Destop 打开 LockzhinerVisionModule 容器并执行以下命令来编译项目
# 进入Demo所在目录
cd /LockzhinerVisionModuleWorkSpace/LockzhinerVisionModule/Cpp_example/C06_test_qr_code_detector
# 创建编译目录
rm -rf build && mkdir build && cd build
# 配置交叉编译工具链
export TOOLCHAIN_ROOT_PATH="/LockzhinerVisionModuleWorkSpace/arm-rockchip830-linux-uclibcgnueabihf"
# 使用cmake配置项目
cmake ..
# 执行编译项目
make -j8 && make install
在执行完上述命令后,会在build目录下生成可执行文件。
5. 例程运行示例
5.1 运行前准备
-
请确保你已经参考 凌智视觉模块摄像头部署指南 正确下载了凌智视觉模块图片传输助手。
5.2 运行过程
在凌智视觉模块输入以下命令:
chmod 777 Test-qr_code-detector
./Test-qr_code-detector
5.3 运行效果
6. 总结
通过上述内容,我们成功的实现了一个二维码识别系统,包括:
-
获取并加载包含二维码的图像。
-
进行二维码的检测和解码,返回检测和解码后的结果。
-
可视化包含二维码图像的识别结果。