GEO数据挖掘-TinyArray简化流程、多组样本分析&more(Day10)(GEO_learnmore )
from 生物技能树
tinyarray简化版本分析流程
需要R包版本2.3.1及以上:
### 运行代码块的快捷键
在RStudio中,你可以使用以下快捷键来运行当前的代码块或所选代码:
- Windows/Linux: `Ctrl + Enter`
- macOS: `Cmd + Enter`
这些快捷键会执行光标所在的代码块,或者如果使用了文本选择,那么执行所选部分的代码。
exp:表达矩阵,pd:临床信息 gpl表格
1.获取数据
rm(list = ls())
#打破下载时间的限制,改前60秒,改后10w秒
options(timeout = 100000)
options(scipen = 20)#不要以科学计数法表示
#前面是一样的
library(tinyarray)
packageVersion("tinyarray")
[1] ‘2.3.3’
library(stringr)
geo = geo_download("GSE7305") #geo_download实现下载和整理
exp = geo$exp #表示从名为 geo 的对象中提取名为exp的组件,并将提取的组件赋值给一个新的变量exp。
exp = log2(exp+1)
boxplot(exp,las = 2) #查看有无异常样本
pd = geo$pd #提取临床信息
gpl_number = geo$gpl
#代替了第一个脚本
# 分组信息
k = str_detect(pd$title,"Normal");table(k)
Group = ifelse(k,"Normal","Disease")
Group = factor(Group,levels = c("Normal","Disease"))
Group = factor(Group,levels = c("Normal","Disease"))
# 探针注释
find_anno(geo$gpl)
library(hgu133plus2.db);ids <- toTable(hgu133plus2SYMBOL)
head(ids)
#差异分析和它的可视化
dcp = get_deg_all(exp,Group,ids,entriz = F) #get_deg_all实现差异基因和可视化
#代替了脚本3和脚本4
table(dcp$deg$change)
head(dcp$deg)
dcp$plots
library(ggplot2)
ggsave("deg.png",width = 15,height = 5)
> #差异分析和它的可视化
> dcp = get_deg_all(exp,Group,ids,entriz = F)
579 down genes,624 up genes
> table(dcp$deg$change)
down stable up
579 19621 624
> head(dcp$deg)
logFC AveExpr t P.Value
1 6.270309 8.436140 45.39552 0.000000000000000000000009106509
2 3.943359 7.351799 35.25755 0.000000000000000000002600407155
3 2.318498 6.631187 32.33367 0.000000000000000000017855505829
4 4.905540 8.140399 30.78154 0.000000000000000000053206731115
5 4.878195 6.815838 29.02740 0.000000000000000000195062651758
6 4.106051 9.045949 28.82714 0.000000000000000000227319306208
adj.P.Val B probe_id symbol change
1 0.0000000000000000002489492 41.58809 202992_at C7 up
2 0.0000000000000000473924204 37.34483 204971_at CSTA up
3 0.0000000000000001952499562 35.77275 228564_at LINC01116 up
4 0.0000000000000004155825748 34.85700 208131_s_at PTGIS up
5 0.0000000000000013331313106 33.74579 210002_at GATA6 up
6 0.0000000000000013809647852 33.61341 212190_at SERPINE2 up
> dcp$plots
> library(ggplot2)
```{
r}
#富集分析
deg = get_deg(exp,Group