
人工智能
文章平均质量分 51
AI Dog
一个在AI领域艰难爬行的小dog,本人数模获奖10余项(美赛F奖、华为杯国二,高教社杯省一),曾指导数模获奖20余项(指导HiMCM美国高中生数学建模获O奖冠名奖全球第一名1次、F奖1次),有多年丰富的数学建模比赛经验,如有需要指导或数模问题可私信留言!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
概率神经网络PNN实现MNIST识别
本课题旨在基于概率神经网络(Probabilistic Neural Network, PNN)设计并实现一个对MNIST手写数字数据集的分类识别系统。该方法在训练阶段无需权值迭代,仅需存储训练样本并构建类概率密度估计函数,具备训练速度快、分类性能稳定的优势。研究流程包括MNIST图像的预处理(如归一化、降维)、PNN模型的构建、核宽度(σ)参数选择与分类器评估。最终在 MATLAB 平台下实现网络设计与分类性能测试,评估PNN在高维图像识别任务中的有效性和实用性。原创 2025-07-01 09:08:09 · 137 阅读 · 0 评论 -
基于BP神经网络的26个英文字母识别
本文提出一个基于BP神经网络的英文字母识别系统,采用HOG+LBP联合特征提取方法处理EMNIST数据集中的手写字母。系统首先对28×28像素图像进行预处理,提取68维HOG特征和59维LBP特征,通过归一化后输入到256-128-26结构的BP网络进行训练。实验结果显示,该方法实现了较高的分类准确率,并通过混淆矩阵和错误分析详细评估了各字母的识别性能。系统在MATLAB平台上完成实现,可应用于OCR等领域,模型文件为emnist_hog_lbp_bp.mat。原创 2025-06-30 19:58:29 · 184 阅读 · 0 评论 -
基于CNN-Transformer融合的频谱感知方法
在较低信噪比(-15dB以下)时,ResNet-CBAM模型的准确率下降较慢,尤其在-20dB左右,ResNet-CBAM模型的检测准确率明显高于其他两种模型,且在整个信噪比范围内保持在99%以上。说明在不同的信噪比条件下,ResNet-CBAM融合模型的检测准确率整体优于CNN-Transformer和LeNet,特别是在低信噪比的恶劣环境中,ResNet-CBAM展现了更好的鲁棒性和性能。本研究不仅验证了ResNet-CBAM模型在频谱感知任务中的有效性,还展示了其在不同信噪比条件下的卓越性能。原创 2025-06-29 07:30:00 · 770 阅读 · 0 评论 -
基于人工智能算法的建筑结构损伤检测算法研究
基于深度学习的金属材料缺陷检测方法研究 摘要:本研究探讨了深度学习技术在金属材料缺陷检测中的应用,对比了传统图像识别与深度学习方法在缺陷检测中的表现。通过预处理、特征提取和分类识别三个关键步骤,分析了SIFT、SURF等传统算法与卷积神经网络等深度学习方法的差异。研究利用Severstal钢铁缺陷等公开数据集,验证了深度学习在自动特征提取方面的优势,为工业设备故障诊断提供了更高效的解决方案。该方法在提升检测精度、减少人工干预方面展现出显著优势,对工业质量检测智能化发展具有重要意义。原创 2025-06-28 09:03:48 · 433 阅读 · 0 评论 -
基于自然语言处理(NLP)的Twitter情感分析系统
本课题致力于构建一个基于自然语言处理(NLP)与机器学习技术的Twitter情感分析系统,旨在自动识别用户推文中的主观情绪倾向,如正面、负面或中性。研究过程中将对海量Twitter文本数据进行预处理,包括去除噪声、分词、词性还原与停用词过滤,随后采用TF-IDF、词向量(如Word2Vec或BERT)等方法进行文本表示。在建模阶段,探索并比较多种分类器(如逻辑回归、SVM、LSTM、BERT等)在情感分类任务中的表现。本研究有助于把握公众情绪动态,广泛应用于舆情监测、品牌管理和社会事件分析等领域。原创 2025-06-27 10:46:31 · 469 阅读 · 0 评论 -
基于残差神经网络的垃圾分类
本课题旨在利用残差神经网络(ResNet)构建一个高效的图像分类模型,实现对垃圾图像的自动识别与分类。通过引入残差连接,有效缓解深层神经网络在训练过程中出现的梯度消失和退化问题,从而提升模型在复杂垃圾图像数据集上的识别精度与泛化能力。研究过程中将构建包含多类别垃圾图像的数据集,利用数据增强技术提升训练样本多样性,最终在测试集中实现对如“可回收物”“有害垃圾”“湿垃圾”“干垃圾”等类别的准确判别。该方法在智能垃圾投放、资源回收与环境管理等领域具有重要的实际应用价值。原创 2025-06-27 10:41:12 · 146 阅读 · 0 评论