EOJ 循环小数 (巧用unordered_map)

介绍

unordered_mapmap 都是 C++ STL 中的关联容器,它们用于存储键值对,但是它们在内部实现和性能上有一些关键的区别:

  1. 内部结构
  • map 通常是基于红黑树实现的,这是一种自平衡的二叉搜索树。这意味着map中的元素是按照键的顺序存储的,因此它可以保持元素的顺序。

  • unordered_map 通常是基于哈希表实现的,它使用哈希函数来快速访问元素。元素在unordered_map中不是按顺序存储的,因此它不保证元素的顺序。

  1. 查找性能
  • map 的查找、插入和删除操作的时间复杂度通常是 O(log n),因为它们需要对红黑树进行搜索。

  • unordered_map 的平均查找、插入和删除操作的时间复杂度是 O(1),这是因为哈希表允许直接通过哈希值访问元素。但是,在最坏的情况下(例如,当所有元素都映射到同一个哈希桶时),这些操作的时间复杂度可以退化到 O(n)。

  1. 内存使用
  • 由于map的平衡树结构,它可能需要更多的内存来存储节点之间的额外信息(例如,用于保持树平衡的颜色和指向父节点的指针)。

  • unordered_map 的哈希表结构通常更内存高效,因为它不需要存储用于平衡的额外信息。

  1. 适用场景
  • 当需要有序遍历时,map 是更好的选择,因为它保证了元素的顺序。

  • 当对性能有高要求,且不需要元素顺序时,unordered_map 是更好的选择,因为它提供了更快的平均查找时间。
    总结来说,unordered_map 通常比 map 查找起来要快,因为它使用了哈希表,这为快速访问元素提供了平均 O(1) 的时间复杂度。但是,当需要有序性或者哈希函数的质量不高时,map 可能是更好的选择。在实际应用中,选择哪种容器取决于具体的需求和性能考量。


题目

  1. 循环小数

给定一个分数,判断其是否是一个无限循环小数,并输出它的第一个循环节。

例如:分数 1/3 是一个无限循环小数,第一个循环节为 3;而 2/5 不是一个无限循环小数。

输入格式

不多于 100 行,每行一个 m/n 形式的分数( 0 < m < n < 100000 0 \lt m \lt n \lt 100000 0<m<n<100000

输出格式

对于每一个分数,当其是一个无限循环小数时,输出它的第一个循环节;否则输出 0。每行的最后有一个换行符。

样例

Input

1/3
2/5
16/30
4/7
1/99

Output

提示

4/7 的计算过程: 4/7=0 余 4,即结果为 0 余数为 4; 410=40、40/7=5 余 5,即结果为 0.5 余数为 5; 510=50、50/7=7 余 1,即结果为 0.57 余数为 1; 110=10、10/7=1 余 3,即结果为 0.571 余数为 3; 310=30、30/7=4 余 2,即结果为 0.5714 余数为 2; 210=20、20/7=2 余 6,即结果为 0.57142 余数为 6; 610=60、60/7=8 余 4,即结果为 0.571428 余数为 4; 由于在计算过程中余数 4 出现过,后面的计算过程即将重复,即找到了循环节571428。

代码

#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <vector>
#include <unordered_map>
using namespace std;

int gcd(int a, int b) {
    if (b == 0) return a;
    while (b != 0) {
        int t = b;
        b = a % b;
        a = t;
    }
    return a;
}

int main() {
    int a, b;
    while (scanf("%d/%d", &a, &b) == 2) {
        int gcdN = gcd(a, b);
        a /= gcdN;
        b /= gcdN;
        vector<int> leftV;
        vector<int> valV;
        unordered_map<int, int> seen;
        while (true) {
            int left = a % b;
            if (left == 0) {
                cout << 0 << endl;
                break;
            }
            if (seen.find(left) != seen.end()) {
                for (int i = seen[left]; i < valV.size(); i++) {
                    cout << valV[i];
                }
                cout << endl;
                break;
            }
            else {
                seen[left] = valV.size();
                leftV.push_back(left);
                a = left * 10;
                valV.push_back(a / b);
            }
        }
    }
    return 0;
}

### 关于EOJ DNA排序问题的解题思路 在处理EOJ中的DNA排序问题时,主要挑战在于如何高效地完成字符串数组的排序以及去重操作。由于题目涉及两个测试点可能因时间复杂度较高而超时,因此需要优化算法设计。 #### 数据结构的选择 为了降低时间复杂度并提高效率,可以引入`std::map`或者`unordered_map`来辅助实现去重功能[^1]。这些数据结构能够快速判断某项是否存在集合中,并支持高效的插入和查找操作。具体来说: - 使用 `std::set` 可以自动去除重复元素并对结果进行升序排列; - 如果还需要自定义比较逻辑,则可以选择基于哈希表的数据结构如 `unordered_set` 配合手动排序。 #### 排序策略 对于给定的一组DNA序列(通常表示为长度固定的字符串),按照字典顺序对其进行排序是一个常见需求。C++标准库提供了非常方便的方法来进行此类任务——即利用 `sort()` 函数配合合适的比较器函数对象或 lambda 表达式来指定所需的排序规则。 下面展示了一个简单的例子用于说明如何读取输入、执行必要的预处理步骤(包括但不限于删除冗余条目),最后输出经过整理的结果列表: ```cpp #include <bits/stdc++.h> using namespace std; int main(){ set<string> uniqueDNAs; string line, dna; while(getline(cin,line)){ stringstream ss(line); while(ss>>dna){ uniqueDNAs.insert(dna); // 自动过滤掉重复项 } } vector<string> sortedUnique(uniqueDNAs.begin(),uniqueDNAs.end()); sort(sortedUnique.begin(),sortedUnique.end()); for(auto it=sortedUnique.cbegin();it!=sortedUnique.cend();++it){ cout<<*it; if(next(it)!=sortedUnique.cend())cout<<" "; } } ``` 上述程序片段实现了基本的功能模块:从标准输入流逐行解析得到各个独立的DNA片段;借助 STL 容器特性轻松达成无重复记录维护目的;最终依据字母大小关系重新安排各成员位置后再统一打印出来[^3]。 #### 学习延伸至自然语言处理领域 值得注意的是,在计算机科学特别是机器学习方向上,“上下文”概念同样重要。例如 Word2Vec 这样的技术就是通过考察周围词语环境来捕捉特定词汇的意义特征[^2]。尽管两者应用场景差异显著,但从原理层面看均体现了对局部模式挖掘的关注。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值