一、概述
将某种现象的指标数值按照时间顺序排列而成的数值序列。
三大部分:描述过去、分析规律、预测未来。
三种模型:季节分解、指数平滑、ARIMA
二、时间序列模型
时间序列数据:同一对象在不同时间连续观察所取得的数据。
时间序列要素:时间要素(年月日)、数值
时期序列:数值要素反映现象在一定时期内发展的结果。(可加)
时点序列:数值要素反映现象在一定时点上的瞬间水平。(不可加)
时间序列变化规律:长期变动趋势、季节变动规律、周期变动规律、不规则变动。(叠加+乘积)
长期趋势T:相当长的时间内,持续上升或者持续下降的趋势。
季节趋势S:由于季节(月、季、周)转变,指标数值发生的周期性变动。
循环变动C:一若干年为周期,波浪式周期变动,增加减少交替出现。
不规则变动I:不可预知,没有规律性。
叠加模型:四种变动之间互相独立 Y=T+S+C+I
乘积模型:四种变动之间相互影响 Y=TxSxCxI
Spss处理缺失值
1.开头/结尾缺失:直接删除
2.中间位置:替换缺失值的方法
替换缺失值五种方法:
1.序列平均值:整个序列的平均数
2.临近点平均值:相邻若干点的平均数
3.临近点中位数:相邻若干点的中位数
4.线性插值:相邻两点的平均数
5.临近点线性趋势:线性回归求缺失点预测值
时间序列分析的具体步骤
1)作时间序列图
2)判断时间序列包含的变动成分
3)时间序列分解(有周期性且包含长期趋势、季节变动或循环变动)
4)建立时间序列分析模型
5)预测未来的指标数值