- 博客(4)
- 收藏
- 关注
原创 open-world 论文翻译
环境变化会深刻影响人工智能系统在现实世界中运行的性能,其影响范围从明显的灾难性故障到不考虑环境变化的非稳健行为。在这里,我们认为设计能够在开放世界中运行的、包括检测、表征和在结构上适应意想不到的环境变化的机器智能,是构建能够解决复杂和相对不确定问题的系统的关键目标。我们提出并区分了三种形式的开放世界学习(OWL)——弱、半强和强——并认为一个完全开发的OWL系统应该是抗脆弱的(接受未知、难解的事物,进而加以利用,在混沌中如鱼得水),而不仅仅是健壮的。
2025-02-20 20:58:55
738
原创 训练数据预处理
有时开源数据集规模较大,训练不方便,需要选择数据集的一部分进行训练,在文件夹中随机选择指定数量的文件这一操作比较简单,但是如何选取对应的label标签文件是个问题。这里提供一种思路:比如在70000张数据集中选择16000张图片进行训练。首先在images文件夹中随机选择16000张图片进行复制,同时在新建的txt文件中记录每个文件的名称;其次根据txt文件中的名称,在labels文件夹中检索相同名称的标签文件进行复制即可。
2024-09-01 22:25:58
752
4
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人