- 博客(5)
- 收藏
- 关注
原创 纤维绳缺陷检测系统:基于YOLOv11和Flask的智能解决方案
在现代工业生产中,纤维绳作为重要的连接和固定材料,其质量直接关系到产品的安全性和可靠性。然而,由于生产过程中的各种因素,纤维绳可能会出现各种缺陷,如断丝、磨损、打结等,这些缺陷如果不及时发现和处理,可能会引发严重的安全事故。因此,开发一套高效、准确的纤维绳缺陷检测系统显得尤为重要。
2025-02-28 16:23:03
836
原创 基于YOLOv8的蔬菜识别项目:从图像到历史记录查询
在人工智能和计算机视觉领域,目标检测技术已经取得了长足的进步。最近,我基于YOLOv8开发了一个有趣的项目——蔬菜识别系统。这个系统不仅可以识别图片中的蔬菜种类,还能记录历史检测结果,方便用户随时查询。以下是项目的详细介绍。
2025-02-26 09:45:11
345
原创 使用YOLOv5和PyQt5开发苹果树病虫害检测系统
本系统旨在帮助果农和农业技术人员快速识别苹果树上的常见病害,如Alternaria斑点和灰斑病。系统通过摄像头捕获苹果树的图像,利用训练好的YOLOv5模型进行实时病虫害检测,并在图像上标记检测到的病害区域。通过YOLOv5和PyQt5开发的苹果树病虫害检测系统,我们提供了一个高效、准确的病虫害识别工具,有助于果农和农业技术人员更好地管理果园健康。未来,我们计划进一步优化模型,提高检测速度和准确性,并扩展支持更多类型的果树和病害。
2024-11-14 10:37:52
743
原创 基于深度学习的果树病害识别与智能问答系统:保卫水果小程序开发实践
保卫水果小程序是一款面向广大果农和农业技术人员的移动互联网应用,旨在通过深度学习技术帮助用户识别果树病害,并提供个性化的果树健康管理方案。该系统不仅提高了病害识别的效率,降低了对专业知识的依赖,还通过智能问答功能,使用户能够轻松获取农业知识和技术支持。本项目由保定学院的陌上初安团队开发,团队成员包括孙亚森和王炳森,分别负责代码编写和界面设计,指导教师为康肖曼老师。保卫水果小程序的开发是一次将深度学习技术应用于农业领域的成功尝试。
2024-11-14 10:14:09
1621
原创 关于YOLOv5运行的报错问题总结
是因为数据标签要是txt格式的不能是xml格式的 要用yolo格式的txt文件 下载labelimg JPEGImages用这个软件来标注 注意:不要用精灵标注助手 没有txt格式的文件保存方式。新旧版本的torch不一样 旧版本的torch可以转换数据类型 新版本不可以 要在gain[3]和gain[2]后面加上.long()来转换一下数据类型。6.想要调用摄像头 吧default的值设置为0就可以了 并且修改datasets 第279行 吧url类型修改为str类型的就可以了。
2023-10-12 14:00:33
862
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人