linux下通过conda部署cuda环境

本文指导用户解决在LinuxCentOS7.9上安装PyTorch时遇到的问题,强调版本匹配、build号选择以及正确配置conda源的重要性。提供详细步骤,包括安装Python、CUDAToolkit和PyTorch,并通过importtorch和torch.cuda.is_available()验证CUDA环境。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

版本

linux:centos7.9 Linux xxx 4.18.0-372.9.1.el8.x86_64 #1 SMP Fri Apr 15 22:12:19 EDT 2022 x86_64 x86_64 x86_64 GNU/Linux
anaconda:Anaconda3-2022.10-Linux-x86_64
cudatoolkit:11.3.1
pytorch:1.10.1(build:cuda112py39h4de5995_0)
python:3.9.17

版本问题很重要,很多人安装失败(包括imort torch失败,或者torch.cuda.is_available()返回False等等)的原因就在于此。需要注意以下3点:

  1. cudatoolkit和pytorch需要遵循官方的规定(详见:https://pytorch.org/get-started/previous-versions/)

  2. 其次pytorch和python也是有对应关系的,pytorch同一版本有不同的build号,其中build号中就会指明兼容的python版本。比如下图中圈出的pytorch,与之兼容的python版本是3.9:
    在这里插入图片描述

  3. 很多人可能遇到过所有包都安装成功了,版本貌似也没问题,import torch也正常,但torch.cuda.is_available()总是返回False,绝大部分都是安装了针对cpu的pytorch,通过 conda list |grep pytorch 即可观察,比如有的人安装了上图中的build为cpu_py37…,如何解决?简单,在安装的时候不光指定版本,同时指定build号即可:

    conda install pytorch=1.10.1=cuda112py39h4de5995_0
    

配置conda源

安装anaconda不再赘述,百度即可。
另外记得配置国内源,下载速度快,编辑~/.condarc即可
清华大学:https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
中国科技大学:https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
在这里插入图片描述

安装步骤

# python
conda install python=3.9
# cudatoolkit
conda install cudatoolkit=11.3
# pytorch
conda install pytorch=1.10.1=cuda112py39h4de5995_0

验证

import torch
torch.cuda.is_available()

返回True则标明cuda环境部署成功,如下图
在这里插入图片描述

### 在 Linux 系统中通过 Conda 配置和运行 Stable Diffusion #### 一、准备工作 在开始之前,确保已经完成以下准备事项: - 安装 NVIDIA 显卡驱动程序[^5]。 - 安装 Python 3.10 版本。 - 安装 CUDA 工具包版本 11.8 或更高版本,以支持 PyTorch 和 Xformers 的功能需求。 #### 二、Conda 虚拟环境的创建与激活 使用 Conda 创建一个新的虚拟环境,并指定所需的 Python 版本: ```bash conda create -n sd-webui python=3.10.6 ``` 激活刚刚创建的虚拟环境: ```bash conda activate sd-webui ``` 此命令会切换到名为 `sd-webui` 的新环境中[^2]。 #### 三、克隆 Stable Diffusion WebUI 源码 从 GitHub 克隆官方仓库至本地文件夹: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git cd stable-diffusion-webui ``` 上述操作将获取最新的 Stable Diffusion WebUI 源代码[^4]。 #### 四、安装依赖项 进入项目根目录后,执行以下命令来安装所需的所有依赖库: ```bash pip install -r requirements.txt ``` 该步骤会解析并自动安装所有必要的 Python 库,包括但不限于 Gradio、PyTorch 和 Transformers。 #### 五、模型权重的下载与放置 下载预训练好的模型权重文件(例如 v2-1_768-ema-pruned.ckpt),并将它复制到项目的对应子目录下: ```bash mkdir -p models/Stable-Diffusion/ cp /path/to/v2-1_768-ema-pruned.ckpt ./models/Stable-Diffusion/ ``` 注意替换 `/path/to/` 为实际存储位置。这是为了让软件能够加载正确的模型参数进行推理运。 #### 六、启动服务端口监听 最后,在终端输入如下指令即可开启图形界面服务器,默认绑定地址为 localhost 并开放 HTTP 接入接口供浏览器访问: ```bash ./webui.sh ``` 或者对于 GPU 加速的情况可能还需要额外设置一些环境变量以便充分利用硬件资源性能优化效果更佳。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值