数字政府建设如何开展数据共享与整合效率

数字政府建设如何开展数据共享与整合效率

一、技术手段

(一)数据中台与数据湖
  1. 数据中台:数据中台是将不同系统、不同格式的数据进行整合、分析和共享的平台。通过构建数据中台,企业或政府部门可以在统一的数据结构下进行多业务系统的数据集成和数据共享。例如,某大型制药公司通过数据中台技术,整合了研发、生产、销售等环节的数据,实现了数据的实时共享和高效利用。
  2. 数据湖:数据湖通过集中存储海量数据,支持多种数据类型和格式的存储,为数据共享提供了强大的基础设施。例如,使用 Amazon S3 和 Apache Hadoop 集中存储数据,能够提高数据的可管理性和可用性。
(二)ETL技术

ETL(Extract, Transform, Load)是传统的数据集成方法,通过从多个数据源提取数据、进行转换和清洗,然后加载到数据仓库或主数据管理系统中。ETL技术的优势在于对不同数据源的标准化处理,能够确保数据的一致性和可靠性。

(三)API接口与微服务架构
  1. API接口:通过开发内部API接口,连接不同部门的系统,实现数据的实时共享。例如,某国际制药公司开发内部API接口,连接研发、生产、销售等各个部门的系统,实现了数据的实时共享。
  2. 微服务架构:微服务架构支持灵活的数据交换和实时同步,尤其适合需要跨平台、跨应用场景的数据集成。
(四)数据虚拟化

数据虚拟化技术通过虚拟化层将各异构数据源的数据整合为一个逻辑视图,用户可以像访问单一数据源一样访问跨系统的数据。这种方法无需复制数据,减少了数据存储和维护成本。

(五)数据融合技术
  1. ETL过程:包括从不同数据源提取数据、将数据转换为统一格式或结构,最后加载到目标系统。
  2. 数据挖掘与机器学习:使用数据挖掘和机器学习算法进行数据融合,识别模式和关系,从而生成更高质量的融合数据。

二、政策支持

(一)完善法律法规
  1. 明确数据共享的法律规定:建议尽快明确数据共享的法律规定,消除基层数据资源共享面临的“不敢、不愿、不能”等挑战。
  2. 制定统一的数据管理标准:政府部门需要制定统一的数据格式、编码方式和数据结构,加快推进数据采集和接口标准化,提高跨组织数据流通的效率。
(二)推动数据开放与共享
  1. 扩大数据资源供给:推进“一数一源”,加强公共数据治理,加大共享开放力度,鼓励开展公共数据授权运营。
  2. 推动区域数据协作:鼓励京津冀、长三角、粤港澳大湾区等地区创新推动公共数据资源开发利用,促进全国一体化数据市场发展。
(三)加强数据安全与隐私保护
  1. 构建合规的数据使用准则:建立全面的数据安全协同治理体系,严格遵守数据安全法律法规,确保数据在收集、处理、存储和传输过程中的安全性。
  2. 保护个人隐私:在开放数据的同时,严格限制公开涉及个人隐私、国家安全、商业机密等的数据。

三、管理措施

(一)建立数据治理机制
  1. 数据质量监控:制定数据质量监控指标,建立异常检测和处理机制,实时监控数据质量并及时处理异常。
  2. 数据目录与权限管理:使用数据目录帮助各部门快速找到所需数据,并通过权限管理功能确保数据的授权使用。
(二)推动跨部门协作
  1. 建立跨部门数据治理机制:明确各部门在数据共享中的责任和流程,促进数据共享与协作。
  2. 场景驱动的数据共享:通过分析不同领域的核心需求,精准识别数据资源的流动与共享模式,为各类场景提供定制化的技术解决方案。
(三)优化数据管理体系
  1. 强化数据采集机制:通过传感器技术、物联网和大数据技术,增强数据的全面性与时效性。
  2. 构建数据共享平台:打造一体化政务云平台体系,促进政务云资源的集中建设、网络互连和资源的高效共享。

四、实际案例

(一)企业数据共享与整合

某国际大型制药公司通过数据共享与交换技术,整合了研发、生产、销售等环节的数据。具体措施包括:

  1. 开发内部API接口,连接各个部门的系统,实现数据实时共享。
  2. 使用数据目录和权限管理工具,确保数据的授权使用。
  3. 通过数据湖集中存储数据,提高数据的可管理性和可用性。
(二)政府数据共享与整合
  1. 人口数据共享:以人口身份证信息和地理数据为纽带,由统计、公安、卫健、民政等部门牵头,建立人口基础信息平台,实现人口数据的整合共享。
  2. 城市数据共享平台:某城市通过构建城市运行管理服务平台,整合了城市基础设施、公共服务等多领域的数据,实现了城市治理的可视化、智能化和协同化。

五、总结

提升数据共享与整合效率需要综合运用技术手段、政策支持和管理措施。通过数据中台、ETL、API接口等技术手段,可以实现数据的高效整合与共享;通过完善法律法规、推动数据开放和加强数据安全保护,可以为数据共享提供良好的政策环境;通过建立数据治理机制、推动跨部门协作和优化数据管理体系,可以确保数据共享的可持续性和高效性。

6/2025 MP4 出版 |视频: h264, 1280x720 |音频:AAC,44.1 KHz,2 Ch 语言:英语 |持续时间:12h 3m |大小: 4.5 GB 通过实际 NLP 项目学习文本预处理、矢量化、神经网络、CNN、RNN 和深度学习 学习内容 学习核心 NLP 任务,如词汇切分、词干提取、词形还原、POS 标记和实体识别,以实现有效的文本预处理。 使用 One-Hot、TF-IDF、BOW、N-grams 和 Word2Vec 将文本转换为向量,用于 ML 和 DL 模型。 了解并实施神经网络,包括感知器、ANN 和数学反向传播。 掌握深度学习概念,如激活函数、损失函数和优化技术,如 SGD 和 Adam 使用 CNN 和 RNN 构建 NLP 和计算机视觉模型,以及真实数据集和端到端工作流程 岗位要求 基本的 Python 编程知识——包括变量、函数和循环,以及 NLP 和 DL 实现 熟悉高中数学——尤其是线性代数、概率和函数,用于理解神经网络和反向传播。 对 AI、ML 或数据科学感兴趣 – 不需要 NLP 或深度学习方面的经验;概念是从头开始教授的 描述 本课程专为渴望深入了解自然语言处理 (NLP) 和深度学习的激动人心的世界的人而设计,这是人工智能行业中增长最快和需求最旺盛的两个领域。无论您是学生、希望提升技能的在职专业人士,还是有抱负的数据科学家,本课程都能为您提供必要的工具和知识,以了解机器如何阅读、解释和学习人类语言。我们从 NLP 的基础开始,从头开始使用文本预处理技术,例如分词化、词干提取、词形还原、停用词删除、POS 标记和命名实体识别。这些技术对于准备非结构化文本数据至关重要,并用于聊天机器人、翻译器和推荐引擎等实际 AI 应用程序。接下来,您将学习如何使用 Bag of Words、TF-IDF、One-Hot E
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值