一、前言
虽然yolov8在本机上训练起来比残差神经网络等快,但是,应该也有不少朋友拿着像我一样的轻薄本,训练一轮电脑都快要炸了一样热的发烫,等待的时间又慢长,并且真实的情况根本不允许我们电脑慢悠悠的跑完,因此只能借助云服务器帮我们跑代码。
二、魔搭服务器
先我们需要租一台云服务器。
魔搭上有免费使用36小时,8核,显存24G的服务器,训练一般的模型应该是足够了。魔搭网页地址:https://www.modelscope.cn/
进入之后,首先领取免费使用时长。当领取完之后,点击侧边栏我的Notebook按钮,然后选中GPU环境,点击启动即可。
操作步骤如图所示:
这里要提醒一下,每次关闭实例,服务器中的文件都会被清空,所以要及时下载需要保存的文件。
启动成功之后,点击查看Notebook,即可使用服务器。
启动后界面如下:
三、使用
1. 安装使用的包
在控制台中输入下面的命令,进行环境安装。
pip install ultralytics
2. 拉取yolov8模型
点击右上角像刷子一样的按钮
输入:
https://github.com/ultralytics/ultralytics
然后将两个勾选框都勾选上,点击下方clone,从github上拉取yolov8模型。
拉取成功后会出现一个ultralytics目录,目录下的文件目录如下:
3. 上传相关资源
1)上传要训练的yolo数据集,放在ultralytics目录下。上传时需要进行压缩,压缩完之后,直接从本地拖拽即可。
上传完后进行解压,如果时zip格式,到数据集的根目录下,输入 unzip 文件名 即可解压。
2)上传yolo预训练的参数模型。预训练模型在服务器上下载太慢了,自己上传会更快一点,当然你也可以选择从服务器上下载,如果使用了预训练模型,代码没有错误的话,运行代码,就会自动下载。
3)上传自己要运行的代码。
我要运行的代码是main.py,上传完成后的目录如下:
4. 修改配置文件
首先,在控制台中运行一下自己要运行的代码。我的话是在控制台来到项目目录之后,输入:
python main.py
之后,如果你的代码没问题的话,可以看到如下所示的报错:
意思是根据配置文件的路径,没有找到我们的数据集。因此,我们需要改一改配置文件。在控制台下输入下面一行:
vi /root/.config/Ultralytics/settings.yaml
这一行代码的意思是是用vi编辑器进行打开。Vi编辑器点击i按键,代表来的修改状态,然后就可以修改文件了。修改完成之后,点击Esc,退出编辑模式,然后输入 :w 即可保存。输入 :q 退出vi编辑器。Vi编辑器的更多用法可以自行搜索。
打开之后,将datasets_dir后的值修改为你数据集的父目录路径。像我的话会修改成:
datasets_dir: /mnt/workspace/urtralytics
然后保存。
然后,就可以运行自己的代码训练训练模型啦。