Bloom Filter (布隆过滤器)

本文介绍了一种高效的数据结构——布隆过滤器,它能够快速判断元素是否存在集合中,具有较低的时间复杂度和空间利用率。文章还讨论了布隆过滤器的优缺点,并给出了具体的实现案例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题的引入:
我们在使用看b站时,它会不停给我们推送内容,但是每次推送的内容基本上都不是重复的,那么它是怎么做到推送去重的呢?怎么快速过滤掉用户已经查看过的内容呢?

  1. 用hashtable 缺点:浪费空间
  2. 用位图存储用户记录 缺点:位图一般只能用来处理整形,如果内容编号是字符串则无法处理了。

所以这时 将hashtable和位图相结合也就有了我们的 bloom filter

bloom filter 概念

布隆过滤器是由 Burton Howard Bloom 在1970年提出的一种概率型的数据结构,特点是高效的插入和查询,能够告诉你某样东西一定不在或者可能存在,它是用多个哈希函数,将一个数据映射到位图结构中。此种方式不仅可以提升查询效率,还能节省大量的空间。

在这里插入图片描述
布隆过滤器的优点

  1. 增加和查询元素的时间复杂度为O(k),k为哈希函数个数,一般比较小,与数据量无关。
  2. 哈希函数相互之间没有关系,方便硬件并行运算。
  3. 布隆过滤器不需要存储元素本身,在某些对保密要求比较严格的场合有很大的优势
  4. 在能够承受一定的误判时,布隆过滤器比其他数据结构由着很大的空间优势。
  5. 数据量很大时,布隆过滤器可以表示全集
  6. 使用同一组散列函数的布隆过滤器可以进行交 并 补 的运算。

布隆过滤器的缺点

  1. 有误判率,存在假阳性(False Positive),不能准确判断元素是否在集合中。(能判断某个元素一定不存在,但不能判断某个元素一定存在
  2. 不能获取元素本身,存的只是一个标识
  3. 一般情况下bloom filter不支持删除
  4. 如果采用计数方式删除,可能会存在计数回绕问题。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

关于让bloom filter的删除功能

布隆过滤器不能直接支持删除工作,因为在删除一个元素时,会影响其他元素

一种支持删除的方法:将bloom filter中的每个比特位扩展成一个小的计数器,插入元素时给k个计数器(k个哈希函数计算出的哈希地址)加一,删除元素时,给k个计数器减一,通过多占用几倍的存储空间的代价来增加删除。

但是 1. 无法确认元素是否真正在布隆过滤器中
2. 存在计数回绕

在这里插入图片描述
bloom filter的应用场景:

  • 注册的时候,快速判断某个昵称是否用过
    没有用过,ok
    用过,再去数据库中确认

  • 黑名单
    不是黑名单,放行
    是,再去数据库中确认

以两个hashfunc为例实现布隆过滤器

namespace lsy
{   



	struct DJBHash
	{
		size_t operator()(const std::string& s)
		{
			size_t hash = 5381;
			for (auto ch : s)
			{
				hash += (hash << 5) + ch;
			}
			return hash;
		}
	};

	struct JSHash
	{
		size_t operator()(const std::string& s)
		{
			size_t hash = 1315423911;
			for (auto ch : s)
			{
				hash ^= ((hash << 5) + ch + (hash >> 2));
			}
			return hash;
		}
	};


	template<size_t M,class K = std::string,
		class HashFunc1=DJBHash,
		class HashFunc2 =JSHash>
		class BloomFilter
	{
	public:
		void Set(const K& key)
		{
			size_t hash1 = HashFunc1()(key) % M;
			size_t hash2 = HashFunc2()(key) % M;
			_bs.set(hash1);
			_bs.set(hash2);


		}

		bool Test(const K& key)
		{
			size_t hash1 = HashFunc1()(key) % M;
			if (_bs.test(hash1) == false)
			{
				return false;
			}
			size_t hash2 = HashFunc2()(key) % M;
			if (_bs.test(hash2) == false)
			{
				return false;
			}

			return true; // 只是有可能存在
		}


	private:
		bitset<M> _bs;

	};





}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值