一、设计内容
铁路货运列车车号识别系统是现代智能交通领域的重要组成部分。在日益发展的铁路运输网络中,快速准确地识别货运列车车号对于整个运输系统的高效运转至关重要。传统的人工识别方式不仅工作强度大,而且容易受到天气、光线等外部因素的影响,导致识别效率低下和错误率高。因此,开发一套自动化的车号识别系统具有重要的实践意义。该系统可以广泛应用于铁路货运管理、安全监控、统计分析等多个领域。在货运管理方面,系统能够实时追踪货运列车位置,优化调度效率;在安全监控方面,可以自动记录列车进出站信息,提高铁路运输安全性;在统计分析方面,能够自动统计货运量,为运营决策提供数据支持。同时,系统的自动化特性还能显著减少人工成本,提高工作效率。
本系统的主要应用领域列举:
①货运管理:实时追踪货运列车位置,优化调度效率
②安全监控:自动记录列车进出站信息,提高铁路运输安全性
③统计分析:自动统计货运量,为运营决策提供数据支持
④自动化操作:减少人工成本,提高工作效率
二、模型构建
1、采用的神经网络模型介绍
本系统采用了两阶段检测识别架构,包括车号区域检测和数字序列识别两个主要部分:
①车号区域检测:使用 YOLOv8 目标检测模型
②数字序列识别:使用改进的 ResNet-Transformer 混合模型
车号区域检测采用了当前最先进的YOLOv8目标检测模型,该模型以其快速和准确的特点著称:主干网络是CSPDarknet;特征金字塔是PANet结构;损失函数包含边界框回归损失、分类损失和目标性损失;优化包含AdamW,学习率采用余弦退火策略。
在数字序列识别阶段,我们设计了一个基于ResNet和Transformer的混合模型,充分利用了CNN在视觉特征提取方面的优势和Transformer在序列建模方面的强大能力。
2、总体设计
在模型设计中,我们特别注重了实际应用场景的需求。ResNet骨干网络通过深层残差结构提取图像的关键特征,而Transformer编码器则能够有效处理数字序列间的依赖关系。为了提高模型的鲁棒性,我们实现了多种数据增强策略,包括随机亮度调整、对比度变化、高斯噪声等。同时,我们还设计了特殊的损失函数,不仅考虑了单个数字的识别准确率,还关注了数字序列的整体连贯性。
系统流程图:
输入图像——>预处理——>YOLO检测——> 区域裁剪 ——>数字识别——>后处理——>输出结果。
模块化设计:
①数据预处理模块(utils/preprocess.py)
②车号检测模块(YOLO模型)
③数字识别模块(ResNet-Transformer)
④结果分析模块(可视化和评估)
3.详细设计:预处理、关键步骤
预处理步骤:
关键步骤:
(1)车号区域检测:
①输入图像缩放到640×640;
②YOLO模型输出边界框坐标和置信度;
③选择置信度最高的检测框;
(2)数字序列识别:
①裁剪检测区域并缩放到128×32;
②ResNet提取视觉特征;
③Transformer处理序列依赖;
④多头分类器输出数字序列;
三、程序调试
在系统实现过程中,我们采用了模块化的设计思路,将整个系统分为数据预处理、模型训练、预测和评估等多个模块。
训练过程中,我们使用了大量的真实场景数据,并通过交叉验证确保模型的泛化能力。为了提高训练效率,我们采用了AdamW优化器和动态学习率调整策略。
在调试过程中,我们遇到了一些典型问题,如模型过拟合、数字序列识别不准确等。针对这些问题,我们采取了相应的解决措施:通过增加数据增强和正则化来缓解过拟合;引入注意力机制提高序列识别准确率;优化损失函数设计提升模型性能。
四、结果分析
系统的最终测试结果表明(基于results/prediction_results.csv),在车号区域检测方面,YOLOv8模型达到了较高的检测准确率,平均精确度(mAP)达到0.72。在数字序列识别方面,我们的ResNet-Transformer混合模型也取得了良好的效果,单个数字的平均识别准确率达到38%,完整车号序列的识别准确率达到27.5%,可能是在图像裁剪的过程中存在图像的拉伸,导致识别准确率较低,后续需要进一步的优化处理。
├── results/ # 预测结果和分析
│ ├── visualization/ # 可视化结果图片
│ │ ├── result_1.jpg
│ │ ├── result_2.jpg
│ │ └── ...
│ ├── position_analysis.png # 位置准确度分析图
│ ├── digit_accuracy.png # 数字识别准确率图
│ ├── confusion_matrix.png # 混淆矩阵
│ ├── summary.png # 总体性能概览
│ ├── prediction_results.csv # 预测结果详情
│ └── error_analysis.txt # 错误分析报告
通过详细的错误分析,我们发现模型在处理模糊图像和复杂背景时仍有提升空间。系统生成的可视化分析报告包括了混淆矩阵、准确率分布图等,这些数据为进一步优化提供了重要参考。
位置准确度分析图(results/position_analysis.png)
数字识别准确率图(results/digit_accuracy.png)
数字识别混淆矩阵图(results/confusion_matrix.png)
准确率分布图(results/summary.png)
识别结果可视化结果图片
五、设计总结
本次课程设计成功实现了一个完整的铁路货运列车车号识别系统,系统在实际测试中展现出良好的性能和稳定性。通过这次设计,我们不仅掌握了深度学习在计算机视觉领域的实际应用,还积累了宝贵的工程实践经验。未来的改进方向包括:进一步优化模型结构以提高识别准确率;增强系统在恶劣环境下的鲁棒性;开发更友好的用户界面;探索模型轻量化以适应边缘设备部署等。我们相信,随着技术的不断进步,该系统将在铁路货运管理中发挥越来越重要的作用。
附:(整个文件的结构图)