WritableComparable排序案例实操


WritableComparable排序概述

排序是MapReducer框架中最重要的操作之一。

MapTask和ReduceTask均会对数据按照key进行排序,该操作属于Hadoop的默认行为,任何应用程序中的数据均会被排序,而不管逻辑上是否需要。
默认排序是按照字典顺序排序,且实现该排序的方法是快速排序

自定义排序WritableComparable原理分析:
如果要bean对象做为key传输,那么需要实现WritableComparable接口重写compareTo方法,然后就可以实现排序:

@Override
public int compareTo(FlowBean bean) {

	int result;
		
	// 按照总流量大小,倒序排列
	if (this.sumFlow > bean.getSumFlow()) {
		result = -1;
	}else if (this.sumFlow < bean.getSumFlow()) {
		result = 1;
	}else {
		result = 0;
	}

	return result;
}

第一个案例需求(全排序)

根据上一次序列化案例产生的结果(http://t.csdnimg.cn/qogGA)再次对总流量进行倒序排序。
输入数据:
在这里插入图片描述

代码实现

在这里插入图片描述

package com.atxiaoyu.mapreduce.sort1;

import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

public class FlowBean implements WritableComparable<FlowBean> {
    private long upFlow; //上行流量
    private long downFlow; //下行流量
    private long sumFlow; //总流量

    //空参构造
    public FlowBean() {
    }

    public long getUpFlow() {
        return upFlow;
    }

    public void setUpFlow(long upFlow) {
        this.upFlow = upFlow;
    }

    public long getDownFlow() {
        return downFlow;
    }

    public void setDownFlow(long downFlow) {
        this.downFlow = downFlow;
    }

    public long getSumFlow() {
        return sumFlow;
    }

    public void setSumFlow(long sumFlow) {
        this.sumFlow = sumFlow;
    }
    public void setSumFlow() {
        this.sumFlow = this.upFlow+this.downFlow;
    }

    @Override
    public void write(DataOutput out) throws IOException {
        out.writeLong(upFlow);
        out.writeLong(downFlow);
        out.writeLong(sumFlow);
    }

    @Override
    public void readFields(DataInput in) throws IOException {
        this.upFlow=in.readLong();
        this.downFlow=in.readLong();
        this.sumFlow=in.readLong();
    }

    @Override
    public String toString() {
        return upFlow+"\t"+downFlow+"\t"+sumFlow;
    }

    @Override
    public int compareTo(FlowBean o) {
        //总流量的倒叙排序
        if(this.sumFlow>o.sumFlow){
            return -1;
        }else if(this.sumFlow<o.sumFlow){
            return 1;
        }else {
            return 0;
        }
    }
}

package com.atxiaoyu.mapreduce.sort1;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import java.io.IOException;

public class FlowMapper extends Mapper<LongWritable, Text,FlowBean, Text> {
    private FlowBean outK=new FlowBean();
    private Text outV=new Text();

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

        //获取一行
        String line=value.toString();
        //切割
        String[] split=line.split("\t");
        //封装
        outV.set(split[0]);
        outK.setUpFlow(Long.parseLong(split[1]));
        outK.setDownFlow(Long.parseLong(split[2]));
        outK.setSumFlow();

        //写出
        context.write(outK,outV);

    }
}

package com.atxiaoyu.mapreduce.sort1;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class FlowReducer extends Reducer<FlowBean,Text,Text, FlowBean> { //总流量相同的,会进入到每一个reducer里面(按照总流量进行排序的)
    @Override
    protected void reduce(FlowBean key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
        for (Text value : values) {
            context.write(value,key);
        }
    }
}

package com.atxiaoyu.mapreduce.sort1;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class FlowDriver {
    public static void main(String[] args) throws InterruptedException, IOException, ClassNotFoundException {
        Configuration conf = new Configuration();
        //1 获取job
        Job job = Job.getInstance(conf);
        //2 设置jar包路径
        job.setJarByClass(FlowDriver.class);
        // 3 管理mapper和reducer
        job.setMapperClass(FlowMapper.class);
        job.setReducerClass(FlowReducer.class);
        // 4 设置map输出的kv类型
        job.setMapOutputKeyClass(FlowBean.class);
        job.setMapOutputValueClass(Text.class);
        //5 设置最终输出的kv类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);
        //6 设置输入路径和输出路径
        FileInputFormat.setInputPaths(job, new Path("D:\\output"));
        FileOutputFormat.setOutputPath(job, new Path("D:\\newOutput"));
        //7 提交job
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}

结果分析

在这里插入图片描述
在这里插入图片描述
实现了按照总流量的倒序排序,与我们设想的一致。

第二个案例需求(二次排序)

问题分析和代码

第一个需求我们已经把总流量的倒序排完了,那么会有这么一种情况,如果某几个手机号的总流量相同,但是他们的上行流量和下行流量不相同,这时候我们再加一个功能,就是当总流量相同的时候再按照上行流量的正序排序,我们只需要修改一下compareTo方法里面的逻辑就好了:

@Override
    public int compareTo(FlowBean o) {
        //总流量的倒叙排序
        if(this.sumFlow>o.sumFlow){
            return -1;
        }else if(this.sumFlow<o.sumFlow){
            return 1;
        }else {
            //如果总流量相同,那么就按照上行流量的正序排序
            if(this.upFlow>o.upFlow){
                return 1;
            }else if(this.upFlow<o.upFlow){
                return -1;
            }else {
                return 0;
            }

        }
    }

结果分析

我们修改一下输入文件,着重观察一下这几行数据,都是总流量相同:
在这里插入图片描述
然后我们运行看一下输出结果:
在这里插入图片描述
与我们设想的一致,实现了当总流量相同的时候再按照上行流量的正序排序。

第三个案例需求(区内排序)

需求分析

基于前一个需求,有一个新的需求,要求按手机号开头前三位实现分区,比如136 137 138 139开头的手机号各在一个文件,其他手机号开头的在一个文件。我们可以通过增加一个自定义分区类来实现。(有关分区的内容在这篇博客中有体现:点击跳转

代码实现

增加一个自定义分区类ProvincePartitioner2:

package com.atxiaoyu.mapreduce.sort1;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;

public class ProvincePartitioner2 extends Partitioner<FlowBean, Text> {
    @Override
    public int getPartition(FlowBean flowBean, Text text, int numPartitions) {
        String phone=text.toString();
        String prePhone=phone.substring(0,3);
        if ("136".equals(prePhone)){
            return 0;
        }else if ("137".equals(prePhone)){
            return 1;
        }else if ("138".equals(prePhone)){
            return 2;
        }else if ("139".equals(prePhone)){
            return 3;
        }else {
            return 4;
        }

    }
}

然后在driver类中再添加两行建立连接:

    job.setPartitionerClass(ProvincePartitioner2.class);
    job.setNumReduceTasks(5);

结果分析

可以看到有5个分区,且实现了136 137 138 139开头的手机号各在一个文件,其他手机号开头的在一个文件,而且每一个文件中实现了总流量排序,并且当总流量相同的时候再按照上行流量的正序排序。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(部分结果图片)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT阿牛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值