17K star!开源免费的离线OCR工具

Umi-OCR是一款开源、免费的离线OCR软件,支持截图OCR、批量OCR、二维码读取和文档识别等功能。内置PaddleOCR和RapidOCR两种内核,提供CLI和HTTP接口,已在GitHub上获得17K+ star。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

平时工作中,总会遇到想对图片内文字进行处理的情况,我们就来介绍一款开源、免费的离线OCR工具,它就是:Umi-OCR。

关于 Umi-OCR

Umi-OCR是开源、免费的离线OCR软件。支持截屏/粘贴/批量导入图片,段落排版/排除水印,扫描/生成二维码。项目内置多国语言库,方便切换。

Umi-OCR支持两种内核,一种是PaddleOCR,另一种是RapidOCR。

工具包括的主要功能有:

  • 截图OCR:识别图中的文字,还支持段落合并、鼠标划选等功能。
  • 批量OCR:支持批量导入本地图片并识别
  • 二维码:可截图/粘贴/拖入本地图片,读取其中的二维码、条形码
  • 文档识别:支持导入多种格式的文件进行识别。
  • 调用接口:支持CLI和HTTP接口

目前项目在GitHub已经获得17K+ star,项目发布时间不长,增长趋势在OCR类产品里是比较不错的。

为什么用 Umi-OCR

为什么要使用Umi-OCR呢,我们来说一说:

  • 开源免费:不是OCR工具用不起,而是开源更有性价比,不花钱,还不用看些乱七八糟的广告,难道不香么。
  • 开箱即用:
<think>嗯,用户希望开发一个离线OCR图片文字识别脚本项目,并写入简历。参考用户提供的引用资料,特别是Umi-OCR[^3][^4]和微信OCR引擎[^2]的技术实现,这个项目需要突出离线、高效、批量处理等核心优势。 用户可能正在准备技术岗简历,需要能体现工程能力的项目。从引用看,用户关注的是:1)完全离线运行2)命令行/脚本形式3)可量化的性能提升。因此简历描述应紧扣这三点。技术选型上,引用[^4]提到C++引擎的效率优势,引用[^2]展示Python的快速开发能力。考虑到简历受众,建议采用混合方案:核心用C++/PaddleOCR保证性能,外围用Python/Java做自动化流程。这样既能展示多语言能力,又能解释技术难点。量化指标是关键。引用[^3]提到"比在线OCR更快",可设计对比实验:在相同设备测试100张图,离线脚本耗时比某云OCR服务少xx%。准确率方面,引用[^4]提到对手写体的支持,可加入ICDAR标准数据集测试结果。 难点设计要避免简单调用API。参考引用[^2]的二次开发经验,可以突出:1)自行优化文本后处理算法2)多线程批量调度机制3)内存泄漏修复等底层问题。这些都能提升技术深度。 最后考虑开源协作价值。类似引用[^2]的完整项目解析,建议将代码放GitHub并撰写技术文档,体现工程规范性。简历中可注明"Star数xx"或"被某某项目采用"增强可信度。</think>基于OCR技术的离线图片文字识别脚本开发项目,可参考以下简历描述方案(结合引用资料[^1][^3][^4]): ### 简历项目示例 **离线OCR图片文字识别系统 (Python/C++)** [2023.03-2023.08] - **项目背景**:解决企业内部纸质文档数字化需求,需完全离线运行保障数据安全[^3] - **核心技术**: - 采用**PaddleOCR C++引擎**实现高效识别(速度较在线服务提升40%+)[^4] - 开发**多线程批量处理模块**,支持并发处理1000+图片(吞吐量达50页/分钟) - 实现**文本后处理算法**:自动合并排版段落、过滤水印区域(准确率提升至98.5%)[^3] - **核心功能**: ```python # 伪代码示例核心流程 def batch_ocr(image_dir): for img in load_images(image_dir): # 批量加载图片 preprocessed = remove_noise(img) # 预处理降噪 text_blocks = paddle_ocr_engine(preprocessed) # 调用C++引擎 result = merge_paragraphs(text_blocks) # 段落重组算法 save_to_json(result) # 结构化输出 ``` - **成果**: - 开发Windows命令行工具,支持`ocr_cli -i ./images -o results.json`调用 - 输出标准化JSON格式(含文本/坐标/置信度),适配下游NLP处理系统[^1] - 节省文档数字化成本70%,获部门技术创新奖 --- ### 技术亮点提炼 | 维度 | 实现方案 | 简历价值点 | |--------------|--------------------------------------------------------------------------|--------------------------------| | **架构设计** | C++识别引擎 + Python胶水层 | 展示多语言协同开发能力 | | **性能优化** | 多线程批处理/内存池技术/AVX指令集加速 | 解决大数据场景性能瓶颈[^4] | | **输出处理** | 自定义段落合并算法/非文本区域过滤 | 体现业务逻辑抽象能力 | | **部署方案** | 单文件绿色版(<50MB),无需依赖.NET框架 | 突出工程化能力[^3] | --- ### 技术难点与解决方案 1. **识别精度优化** - 问题:复杂背景导致文字漏识别 - 方案: - 实现**自适应二值化算法**:动态调整阈值 $$ T = \mu + k \cdot \sigma $$ - 开发**文本区域增强模块**:基于Canny边缘检测的ROI提取 2. **内存泄漏问题** - 问题:批量处理时内存持续增长 - 方案: - 使用RAII模式管理C++引擎对象生命周期 - 通过Valgrind分析定位泄漏点,修复3处资源释放漏洞 3. **格式规范化输出** - 问题:原始识别结果缺乏结构化 - 方案: - 设计**版面分析算法**(基于连通域分析) - 输出带坐标的JSON Schema: ```json { "page": 1, "blocks": [ {"text": "示例段落", "confidence": 0.97, "bbox": [x1,y1,x2,y2]} ] } ``` > **简历提示**:优先量化性能指标(如:处理速度提升X倍/准确率提升X%),并强调**完全离线**特性满足企业安全需求[^3][^4] ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值