自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(47)
  • 收藏
  • 关注

原创 深度学习打卡1

(y_i是真实标签的one-hot编码,ŷ_i是模型预测的对应类别的概率)。太小:步长过小,收敛速度极慢,可能需要非常多的步骤才能到达谷底,甚至卡在不是最低点的平坦区域(局部极小点或鞍点)。在当前参数位置,计算损失函数关于所有参数的梯度。太大:步长过大,可能会“跨过”谷底,甚至导致损失值震荡或发散(在山谷两边来回跳)。不断重复步骤 2 和 3,计算新位置的梯度,再次沿负梯度方向更新参数。(负梯度方向)调整参数,逐步逼近损失函数的最小值点。(y是0或1的真实标签,ŷ是预测为1的概率)。问题(预测连续值)。

2025-06-15 17:17:26 627

原创 6.8打卡

【代码】6.8打卡。

2025-06-08 20:59:28 147

原创 47天打卡

【代码】47天打卡。

2025-06-07 23:39:52 192

原创 6.6打卡

【代码】6.6打卡。

2025-06-06 22:24:38 190

原创 第三十三天打卡复习

1. 张量操作torch 库提供了张量(Tensor)数据结构,类似于 NumPy 的多维数组,但张量可以在 GPU 上运行以加速计算。 2. 自动求导torch.autograd 模块实现了自动求导功能,这对于训练神经网络至关重要。通过设置 requires_grad=True ,PyTorch 会跟踪所有涉及该张量的操作,并在调用 backward() 方法时自动计算梯度。 3. 神经网络模块torch.nn 模块提供了构建神经网络所需的各种组件,如层、损失函数等。可以通过继承 torch.nn.

2025-06-03 21:55:18 1031

原创 6.2打卡

【代码】6.2打卡。

2025-06-02 23:48:02 93

原创 6.1打卡

【代码】6.1打卡。

2025-06-01 22:15:38 135

原创 5.31打卡

【代码】5.31打卡。

2025-05-31 19:41:55 217

原创 5.30打卡

【代码】5.30打卡。

2025-05-30 23:43:22 98

原创 5.29打卡

【代码】5.29打卡。

2025-05-29 22:36:12 177

原创 第三十五天打卡

【代码】第三十五天打卡。

2025-05-27 20:18:15 199

原创 第三十五天打卡

【代码】第三十五天打卡。

2025-05-26 22:07:55 174

原创 第三十五天打卡

【代码】第三十五天打卡。

2025-05-25 22:06:00 188

原创 第三十四天打卡

【代码】第三十四天打卡。

2025-05-24 22:26:15 238

原创 第三十三天打卡

功能 :将原始的训练标签数据 y_train 转换为 torch.LongTensor 类型的张量。- 功能 :将 fc1 的输出 out 传入 ReLU 激活函数进行非线性变换,给网络引入非线性。- 功能 :将经过激活函数处理后的隐藏层输出 out 传入全连接层 fc2 ,得到最终的输出。- 功能 :将输入数据 x 传入全连接层 fc1 进行线性变换,得到隐藏层的线性输出。- 参数 : out 是经过 ReLU 激活函数处理后的隐藏层输出。- 参数 : out 是 fc1 的输出。

2025-05-23 22:21:56 361

原创 第三十二天打卡

@浙大疏锦行

2025-05-22 22:20:29 358

原创 第三十一天打卡

X_train, X_test, y_train, y_test = split_dataset(data, 'target_column') # 替换 target_column 为实际列名。项目文件夹中其他部分:拆分后的信贷项目,学习下如何拆分的,未来你看到的很多大项目都是类似的拆分方法。# 步骤4:提取特征工程代码到 src/data/feature_engineering.py。# 步骤5:提取模型训练代码到 src/models/train.py。# 假设某些列需要标签编码,这里以示例说明。

2025-05-21 23:58:57 264

原创 第三十天打卡

Python的模块导入路径(sys.path)解析机制不同。model/

2025-05-20 12:13:11 549

原创 第二十九天打卡

【代码】第二十九天打卡。

2025-05-19 22:32:41 311

原创 第二十八天打卡

【代码】第二十八天打卡。

2025-05-18 18:19:50 321

原创 第二十七天打卡

func(*args, **kwargs) 调用原函数并传递参数 :助手拿到顾客的需求后,会把装着口味要求的袋子和记录特殊要求的小本子交给蛋糕师傅,让蛋糕师傅按照这些要求去做蛋糕。有一天,你想在蛋糕师傅做蛋糕的前后记录一些信息,比如开始做蛋糕的时间、做完蛋糕的时间,但是又不想改变蛋糕师傅做蛋糕的方式。- wrapper 函数返回原函数的返回值 :助手最后把放在托盘上的蛋糕交给顾客,保证顾客拿到的蛋糕和没有助手帮忙时蛋糕师傅做出来的是一样的。原本顾客直接找蛋糕师傅做蛋糕,现在有了助手,顾客先把需求告诉助手。

2025-05-17 12:28:56 1274

原创 第二十六天打卡

全局变量 :定义在函数外部,整个程序都能访问,修改时需在函数内用 global 关键字声明。局部变量 :定义在函数内部,只能在函数内部访问,函数执行结束后就会被销毁。位置参数 :在函数定义时,没有默认值且位于 *args 之前的参数通常是位置参数。在 process_data 函数里, id_num 和 name 就是位置参数,因为它们没有默认值,并且在 *tags 之前。# ...关键字参数 :有两种情况。一种是像 status 这种有默认值的参数,它必须通过关键字形式传值,被称为仅关键字参数;

2025-05-16 20:23:06 792

原创 第二十五天打卡

若try语句发生错误,则判断错误类型,执行错误类型对应的except语句,不执行else语句。finally语句无条件执行,多用于资源保存,文件关闭。首先执行try语句,若正确直接执行else语句。

2025-05-15 21:26:00 343

原创 第二十四天打卡

【代码】第二十四天打卡。

2025-05-14 22:21:00 198

原创 第二十三天打卡

作业:整理下全部逻辑的先后顺序,看看能不能制作出适合所有机器学习的通用pipeline。

2025-05-13 20:41:12 304

原创 第二十二天打卡

【代码】第二十二天打卡。

2025-05-12 21:56:03 395

原创 第21天打卡

高维数据难以直接可视化(如超过3维),通过降维(如PCA、t-SNE、UMAP)投影到2D/3D空间,揭示数据分布、聚类或流形结构。:t-SNE(非线性可视化)、PCA(线性全局结构)、UMAP(高效非线性)。数据中存在高度相关或冗余特征(如多重共线性),降维可提取独立成分,去除噪声。:PCA(最大化方差去噪)、ICA(独立成分分析)。高维特征导致计算成本高且易过拟合(如文本、图像数据),降维可减少参数数量,提升效率。:PCA、LDA(有监督分类场景)、Autoencoder(深度学习方法)。

2025-05-10 21:59:39 1257

原创 第二十天打卡 5/9

【代码】第二十天打卡 5/9。

2025-05-09 22:24:54 278

原创 第十九天打卡 5/8

【代码】第十九天打卡 5/8。

2025-05-08 22:01:16 441

原创 第十八天打卡 5/7

【代码】第十八天打卡 5/7。

2025-05-07 18:38:17 1015

原创 第17天打卡 5/6

聚类

2025-05-06 17:56:42 455

原创 第16天打卡 5/5

行(Rows) :二维数组中的水平元素组称为行。综合起来, shap_values[:,:,0] 会从 shap_values 这个三维数组中提取出所有样本、所有特征在第 0 个类别下的值,最终返回一个二维数组。第一个 : 表示选取第 1 个维度的所有元素,第二个 : 表示选取第 2 个维度的所有元素。第一个 : :表示选取第一个维度(样本数)的所有元素。0 :表示选取第三个维度(类别数)的第 0 个元素。第二个 : :表示选取第二个维度(特征数)的所有元素。0 表示选取数组的第 0 个维度的第一个元素。

2025-05-05 22:35:40 237

原创 完整项目撰写:公共健康研究,分析环境/经济因素对死亡率的影响

【代码】完整项目撰写:公共健康研究,分析环境/经济因素对死亡率的影响。

2025-05-04 22:39:42 220

原创 shap可视化图

【代码】shap可视化图。

2025-05-03 23:16:35 923

原创 第十三天打卡 5/2

不平衡数据集的处理

2025-05-02 22:46:10 185

原创 粒子群算法

粒子群算法(PSO)是一种基于群体智能的优化算法,模拟鸟群或鱼群的社会行为。每个粒子代表解空间中的一个候选解,从随机解出发,通过迭代更新自身位置和速度,逐步逼近最优解。在PSO中,每个解被称为“粒子”,每个粒子都有一个适应值(fitness value),表示其在解空间中的优劣程度。粒子通过调整自己的速度和位置来寻找最优解1。个体极值(pBest):粒子自身找到的最优解。全局极值(gBest):整个种群找到的最优解2。

2025-05-01 19:27:54 992

原创 第十一天打卡 4/30

网格搜索,贝叶斯优化

2025-04-30 17:57:36 500

原创 第十天打卡 4/29

【代码】第十天打卡 4/29。

2025-04-29 22:15:26 269

原创 第九天打卡 4/29

在代码 for i in range(len(features)): 中,使用的是 range(stop) 这种形式, stop 的值是 len(features)。结合前面的例子, len(features) 为 4,那么 range(len(features)) 就会生成一个包含 0, 1, 2, 3 的整数序列。figsize=(12, 10) 是 plt.figure() 函数的一个参数,用于指定绘图窗口的大小,单位是英寸。用于生成一个不可变的整数序列,通常在 for 循环中控制循环次数。

2025-04-29 19:36:30 466

原创 第八天打卡 4/28

标签编码,归一化,标准化

2025-04-28 22:40:04 581

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除