- 博客(43)
- 收藏
- 关注
原创 API,URL,Token,XML,JSON是干嘛的
XMLJSON结构基于标签的层次结构键值对的形式可读性对于复杂数据结构,可能较难快速理解更加直观,适合快速浏览数据大小通常比JSON更大(因为有更多的标签)相对较小,节省带宽使用场景文档存储、旧版系统Web应用、API响应简单来说,如果你想要一种更加直观且轻便的方式来传递数据,JSON通常是更好的选择;而如果你需要处理非常复杂的数据结构或者需要跨平台的文档存储解决方案,XML也可能是一个不错的选择。不过,在当今的Web开发中,JSON因其简洁和高效的特点被更频繁地使用。
2025-02-27 17:40:54
1665
1
原创 Python实战项目:广东省PM2.5分析案例(环境科学专业)
该图揭示了广东省PM2.5浓度呈现“冬高夏低、春秋过渡”的典型季风气候区特征,同时通过月份波动可定位污染防控关键窗口期(如11-12月)。需结合气象数据与污染源解析,进一步区分自然因素与人为排放的贡献权重。该折线子图通过中位数、平均值和最大值多维度揭示了PM2.5浓度的分布特性、极端事件及长期演变规律。未来需结合污染源解析、气象数据及政策节点深化归因分析,并校验数据单位与质量以确保结论可靠性。重点防控冬季峰值污染及突发性极端事件,强化常态治理与应急响应的协同性。
2025-02-17 10:50:32
1018
原创 R语言应用KNN、朴素贝叶斯、SVM实现手写数字识别
本文基于MNIST数据集,使用R语言中的K近邻(KNN)、朴素贝叶斯和支持向量机(SVM)算法实现手写数字分类任务,并对比了三者的性能差异。以下是实验的核心内容与结论。模型实现与评估包括KNN\SVM\贝叶斯实验表明,SVM在此任务中表现最优,其高准确率得益于RBF核处理高维数据和非线性模式的能力。KNN虽表现良好,但计算复杂度随数据量增长;朴素贝叶斯因强独立性假设受限,适合特征间相关性较低的场景。实际应用中,SVM可作为手写数字识别的首选模型,尤其在追求精度时。未来可进一步优化超参数(如SVM的核参数、
2025-02-05 11:47:51
817
2
原创 数据科学入门必知:6种概率分布的原理、应用与可视化(附Python代码)
这篇文章介绍数据科学中六种关键概率分布:正态分布、二项式分布、泊松分布、均匀分布、卡方分布和Beta分布。每种分布都详细讲解了其原理、应用场景及数学公式,并附有Python代码示例帮助读者实践。正态分布用于描述对称数据,卡方分布用于检验差异,Beta分布则适用于建模概率的不确定性。文章还探讨了这些分布在异常检测、A/B测试、用户行为分析等实际问题中的应用。通过丰富的图表和代码,读者不仅能理解理论知识,还能动手实现,为深入学习数据科学打下坚实基础。总计提供了从基础概念到具体应用的全面指南,适合初学者快速入门。
2025-01-28 20:33:59
1094
原创 使用FineBI进行数据分析(入门级)
哔哩哔哩,简称B站,现为中国年轻世代高度聚集的文化社区和视频平台,该网站于2009年6月26日创建,2018年3月28日在美国纳斯达克上市。早期B站是一个ACG(动画、漫画、游戏)内容创作与分享的视频网站。经过十多年的发展,围绕用户、创作者和内容,构建了一个源源不断生产优质内容的生态系统,目前已经覆盖7000多个兴趣圈层的多元文化社区,被QuestMobile研究院评选为“Z世代偏爱APP”和“Z世代偏爱泛娱乐APP“两。
2025-01-17 18:44:42
1054
原创 大数据之路 读书笔记 Day7 实时技术 简介及流式技术架构
大数据之路 读书笔记 Day7 实时技术 简介及流式技术架构关键词:架构、storm、去重指标、数据倾斜
2024-07-18 22:32:13
938
原创 【计算机组成原理实验】——实验 MIPS 指令系统和 MIPS 体系结构
了解和熟悉指令级模拟器。熟练掌握 MIPSsim 模拟器的操作和使用方法。熟悉 MIPS 指令系统及其特点,加深对 MIPS 指令操作语义的理解。熟悉 MIPS 体系结构。
2024-07-07 00:31:23
1640
原创 大数据之路 读书笔记 Day3
允许开发者根据自身需求定义新的事件或指标,比如特定的用户操作、业务流程中的特定步骤等。自定义埋点类就是指开发者自己定义的一系列数据采集点,用于收集特定业务场景下的数据。自定义埋点类的使用,意味着开发者可以更灵活地监控和分析特定的业务逻辑或用户行为,而不仅仅是通用的预设事件。
2024-06-28 22:01:52
1486
原创 【数据挖掘】部分题目汇总
实现过程包括:计算数据的协方差矩阵,找到协方差矩阵的特征向量和特征值,选择最重要的特征向量形成新的特征空间,将数据投影到新的特征空间。因为初始PR值均为1,且每个页面仅有一个出链,所以迭代一次后:PR(A)=PR(B)=PR©=(1-0.85)+0.85*(1/1+1/1)=0.15+0.85*1=1。第二组{(3,5), (5,8)}的中心变为{(4,6.5)}。根据PageRank公式,PR(A) = (1-d) + d*(PR(B)/1 + PR(C)/1),同理计算B和C的PR值。
2024-06-28 10:00:00
1150
原创 【python项目】中国五大城市PM2.5 数据分析(含数据集及完整代码)
通过分析PM2.5数据掌握使用python中几个重要的库,pandas、numpy、matplotlib,同时掌握分析识图
2024-05-28 20:22:56
2067
2
Python实战项目:广东省PM2.5分析案例(环境科学专业)
2025-02-17
SQL语言教学ppt,全英版本
2025-02-14
使用FineBI进行数据分析(入门级)
2025-01-17
操作系统 期末重点复习 含实验报告和参考教材课后题答案
2025-01-01
【python项目】中国五大城市PM2.5 数据分析(含数据集及完整代码)
2024-11-24
PM2.5 数据集 包含上海、成都、广州、北京、沈阳五地的PM2.5观测,csv文件
2024-11-24
【python项目】中国五大城市PM2.5 数据分析(含数据集及完整代码)
2024-07-14
银行信用卡风险大数据分析与挖掘2024
2024-07-11
信用卡风险分析挖掘实验数据源 - 2024年版
2024-07-11
计算机网络实验汇总及期末作业、复习资料.zip
2024-06-20
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人